R Vivian Allahyari, Nicolette M Heinsinger, Daniel Hwang, David A Jaffe, Javad Rasouli, Stephanie Shiers, Samantha J Thomas, Theodore J Price, Abdolmohamad Rostami, Angelo C Lepore
There is growing appreciation for astrocyte heterogeneity both across and within central nervous system (CNS) regions, as well as between intact and diseased states. Recent work identified multiple astrocyte subpopulations in mature brain. Interestingly, one subpopulation (Population C) was shown to possess significantly enhanced synaptogenic properties in vitro, as compared with other astrocyte subpopulations of adult cortex and spinal cord. Following spinal cord injury (SCI), damaged neurons lose synaptic connections with neuronal partners, resulting in persistent functional loss. We determined whether SCI induces an enhanced synaptomodulatory astrocyte phenotype by shifting toward a greater proportion of Population C cells and/or increasing expression of relevant synapse formation-associated genes within one or more astrocyte subpopulations. Using flow cytometry and RNAscope in situ hybridization, we found that astrocyte subpopulation distribution in the spinal cord did not change to a selectively synaptogenic phenotype following mouse cervical hemisection-type SCI. We also found that spinal cord astrocytes expressed synapse formation-associated genes to a similar degree across subpopulations, as well as in an unchanged manner between uninjured and SCI conditions. Finally, we confirmed these astrocyte subpopulations are also present in the human spinal cord in a similar distribution as mouse, suggesting possible conservation of spinal cord astrocyte heterogeneity across species.
Acta Neuropathol. 2010 Jan;119(1):7-35
[PMID:
20012068]
J Neurosci Res. 2017 Jun;95(6):1295-1306
[PMID:
27617844]
Nat Commun. 2020 Mar 5;11(1):1220
[PMID:
32139688]
J Neurotrauma. 2020 Feb 1;37(3):572-579
[PMID:
31392919]
J Neurosci. 2012 May 2;32(18):6391-410
[PMID:
22553043]
Neuroscience. 2009 Mar 3;159(1):369-79
[PMID:
19146928]
Trends Neurosci. 2009 Dec;32(12):638-47
[PMID:
19782411]
Exp Neurol. 2017 Jan;287(Pt 2):276-287
[PMID:
27582085]
J Clin Invest. 2017 Sep 1;127(9):3259-3270
[PMID:
28737515]
Neurobiol Dis. 2021 Jul;155:105389
[PMID:
33975016]
Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3513-8
[PMID:
11248109]
Exp Neurol. 2012 May;235(1):116-22
[PMID:
22342316]
Nat Neurosci. 2015 Jul;18(7):942-52
[PMID:
26108722]
J Neurosci. 2013 Jul 31;33(31):12870-86
[PMID:
23904622]
Nat Neurosci. 2010 Jan;13(1):133-40
[PMID:
20023653]
Nature. 2012 May 27;486(7403):410-4
[PMID:
22722203]
J Spinal Cord Med. 2013 Jan;36(1):1-2
[PMID:
23433327]
Nature. 2017 Jan 26;541(7638):481-487
[PMID:
28099414]
Neuron. 2018 Dec 5;100(5):1116-1132.e13
[PMID:
30344043]
J Cell Commun Signal. 2009 Dec;3(3-4):167-76
[PMID:
19904629]
Nat Neurosci. 2017 Mar;20(3):396-405
[PMID:
28166219]
Neuron. 2016 Dec 21;92(6):1181-1195
[PMID:
27939582]
J Neurosci. 2010 Oct 13;30(41):13597-608
[PMID:
20943901]
Matrix Biol. 2012 Apr;31(3):170-7
[PMID:
22285841]
FASEB J. 2019 Dec;33(12):13775-13793
[PMID:
31577916]
Exp Neurol. 2015 Sep;271:479-92
[PMID:
26216662]
Nat Neurosci. 2020 Apr;23(4):500-509
[PMID:
32203496]
Exp Neurol. 2021 Sep;343:113757
[PMID:
33991526]
Neuron. 2020 Jun 17;106(6):992-1008.e9
[PMID:
32320644]
eNeuro. 2019 Sep 26;6(5):
[PMID:
31427403]
Trends Immunol. 2020 Sep;41(9):758-770
[PMID:
32819810]
Glia. 2019 Mar;67(3):452-466
[PMID:
30548313]
Glia. 2011 Feb;59(2):200-7
[PMID:
21046559]
Neuron. 2014 Jan 22;81(2):229-48
[PMID:
24462092]
Nature. 2016 Apr 14;532(7598):195-200
[PMID:
27027288]
Exp Neurol. 2012 May;235(1):142-51
[PMID:
21925174]