Hsa_Circ_0098181 Suppresses Hepatocellular Carcinoma by Sponging miR-18a-3p and Targeting PPARA.

Yuan-Yuan Luo, Ke-Gong Tao, Yi-Ting Lu, Bin-Bin Li, Kai-Ming Wu, Chen-Hong Ding, Fang-Zhi Yan, Yue Liu, Yong Lin, Xin Zhang, Xin Zeng
Author Information
  1. Yuan-Yuan Luo: Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
  2. Ke-Gong Tao: Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
  3. Yi-Ting Lu: Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
  4. Bin-Bin Li: Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
  5. Kai-Ming Wu: Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, China.
  6. Chen-Hong Ding: Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, China.
  7. Fang-Zhi Yan: Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, China.
  8. Yue Liu: Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
  9. Yong Lin: Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, China.
  10. Xin Zhang: Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, China.
  11. Xin Zeng: Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.

Abstract

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths, and its incidence is still high in China. This study aimed to investigate the circular RNAs (circRNAs) involved in the development of HCC and elucidate the mechanism. RNA sequencing found 72 downregulated circRNAs and 88 upregulated circRNAs in human HCC tissues, including hsa_circ_0098181, hsa_circ_0072309, hsa_circ_0000831, and hsa_circ_0000231. The reduction of hsa_circ_0098181 was confirmed in eight paired human HCC tissues, hepatoma cell lines, and CCL4/DEN-induced mouse HCC models by RT-qPCR. The FISH assay revealed that hsa_circ_0098181 is mainly located in the cytoplasm of hepatocytes in the paratumor tissues. Further log-rank analysis performed in 91 HCC patients demonstrated that low expression of hsa_circ_0098181 was related to poor prognosis. The plasmid and lentivirus overexpressing hsa_circ_0098181 were delivered into HCC cell lines. After hsa_circ_0098181 was upregulated, the proliferation, invasion, migration, and colony formation of HCC cell lines were inhibited, and the apoptosis was promoted. Moreover, exogenous hsa_circ_0098181 delivery mitigated the tumor formation ability of Huh7 in Balb/C nude mice. The dual-luciferase reporter assay and the RIP assay verified that hsa_circ_0098181 sponged miR-18a-3p to regulate PPARA. In addition, a rescue experiment found miR-18a-3p mimic partly reversed the suppression of hsa_circ_0098181 on proliferation, invasion, and migration of HCC cell lines. In conclusion, hsa_circ_0098181 can repress the development of HCC through sponging miR-18a-3p and promoting the expression of PPARA and , and hsa_circ_0098181 might be a therapeutic target for HCC.

Keywords

References

  1. Ann Surg. 2015 May;261(5):947-55 [PMID: 25010665]
  2. FEBS J. 2018 Feb;285(3):432-443 [PMID: 28971574]
  3. Biochemistry. 2020 Oct 20;59(41):3951-3964 [PMID: 32930581]
  4. Cancers (Basel). 2020 May 31;12(6): [PMID: 32486341]
  5. Biomed Pharmacother. 2020 Dec;132:110869 [PMID: 33113427]
  6. Mol Cancer. 2019 Jul 19;18(1):119 [PMID: 31324186]
  7. Cell. 2020 Oct 1;183(1):76-93.e22 [PMID: 32931733]
  8. Int J Biol Sci. 2021 Mar 2;17(4):995-1009 [PMID: 33867824]
  9. Aging (Albany NY). 2020 Jan 29;12(2):1643-1655 [PMID: 32003753]
  10. Gastroenterology. 2016 May;150(5):1147-1159.e5 [PMID: 26874076]
  11. PPAR Res. 2017;2017:8252796 [PMID: 28316613]
  12. Hepatol Commun. 2017 Jun 19;1(6):524-537 [PMID: 29404476]
  13. Int J Cancer. 2020 Jul 15;147(2):317-330 [PMID: 31597196]
  14. Front Oncol. 2021 May 14;11:667428 [PMID: 34055634]
  15. JAMA Oncol. 2017 Dec 1;3(12):1683-1691 [PMID: 28983565]
  16. Aging (Albany NY). 2021 Apr 23;13(8):11969-11987 [PMID: 33891564]
  17. Cancer Cell Int. 2021 Jan 22;21(1):72 [PMID: 33482819]
  18. RNA Biol. 2015;12(4):381-8 [PMID: 25746834]
  19. Trends Cancer. 2020 Apr;6(4):319-336 [PMID: 32209446]
  20. Int J Mol Sci. 2014 May 26;15(6):9331-42 [PMID: 24865493]
  21. Cell Death Dis. 2020 Dec 14;11(12):1065 [PMID: 33311442]
  22. Cell. 1993 Jun 4;73(5):1019-30 [PMID: 7684656]
  23. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):3873-3884 [PMID: 31566012]
  24. Virol J. 2020 Mar 18;17(1):40 [PMID: 32188476]
  25. Aging (Albany NY). 2019 Oct 1;11(19):8183-8203 [PMID: 31581132]
  26. Cell Death Dis. 2020 Oct 7;11(10):833 [PMID: 33028811]
  27. Nat Commun. 2016 Apr 06;7:11215 [PMID: 27050392]
  28. BMC Genomics. 2017 Oct 3;18(Suppl 6):680 [PMID: 28984197]
  29. Nat Rev Cancer. 2021 Jan;21(1):22-36 [PMID: 33082563]
  30. Mol Cancer. 2020 Dec 14;19(1):172 [PMID: 33317550]
  31. Mol Cancer. 2021 Jan 4;20(1):4 [PMID: 33397425]
  32. Int J Mol Sci. 2020 Nov 14;21(22): [PMID: 33202605]
  33. Int J Med Sci. 2019 Jan 1;16(2):292-301 [PMID: 30745810]
  34. Nat Rev Gastroenterol Hepatol. 2019 Oct;16(10):589-604 [PMID: 31439937]
  35. Cell Death Dis. 2019 Nov 27;10(12):900 [PMID: 31776329]
  36. J Hepatol. 2018 Jun;68(6):1214-1227 [PMID: 29378234]
  37. J Cancer Res Clin Oncol. 2017 Jan;143(1):17-27 [PMID: 27614453]
  38. N Engl J Med. 2011 Sep 22;365(12):1118-27 [PMID: 21992124]
  39. Biochimie. 2017 May;136:75-84 [PMID: 28077274]
  40. Nature. 2013 Mar 21;495(7441):384-8 [PMID: 23446346]
  41. Cell Death Dis. 2021 Jan 4;12(1):15 [PMID: 33414412]
  42. Open Biol. 2019 Sep 27;9(9):190074 [PMID: 31480990]
  43. BMC Cancer. 2015 Jul 24;15:542 [PMID: 26206264]

Word Cloud

Similar Articles

Cited By