CellComm infers cellular crosstalk that drives haematopoietic stem and progenitor cell development.

Edroaldo Lummertz da Rocha, Caroline Kubaczka, Wade W Sugden, Mohamad Ali Najia, Ran Jing, Arianna Markel, Zachary C LeBlanc, Rafael Dos Santos Peixoto, Marcelo Falchetti, James J Collins, Trista E North, George Q Daley
Author Information
  1. Edroaldo Lummertz da Rocha: Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florian��polis, Brazil. ORCID
  2. Caroline Kubaczka: Stem Cell Program, Boston Children's Hospital, Boston, MA, USA. ORCID
  3. Wade W Sugden: Stem Cell Program, Boston Children's Hospital, Boston, MA, USA. ORCID
  4. Mohamad Ali Najia: Stem Cell Program, Boston Children's Hospital, Boston, MA, USA. ORCID
  5. Ran Jing: Stem Cell Program, Boston Children's Hospital, Boston, MA, USA. ORCID
  6. Arianna Markel: Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
  7. Zachary C LeBlanc: Stem Cell Program, Boston Children's Hospital, Boston, MA, USA. ORCID
  8. Rafael Dos Santos Peixoto: Undergraduate program in Automation and Control Engineering, Federal University of Santa Catarina, Florian��polis, Brazil. ORCID
  9. Marcelo Falchetti: Graduate Program of Pharmacology, Center for Biological Sciences, Federal University of Santa Catarina, Florian��polis, Brazil. ORCID
  10. James J Collins: Broad Institute of MIT and Harvard, Cambridge, MA, USA. ORCID
  11. Trista E North: Stem Cell Program, Boston Children's Hospital, Boston, MA, USA. trista.north@childrens.harvard.edu.
  12. George Q Daley: Stem Cell Program, Boston Children's Hospital, Boston, MA, USA. George.Daley@childrens.harvard.edu. ORCID

Abstract

Intercellular communication orchestrates a multitude of physiologic and pathologic conditions. Algorithms to infer cell-cell communication and predict downstream signalling and regulatory networks are needed to illuminate mechanisms of stem cell differentiation and tissue development. Here, to fill this gap, we developed and applied CellComm to investigate how the aorta-gonad-mesonephros microenvironment dictates haematopoietic stem and progenitor cell emergence. We identified key microenvironmental signals and transcriptional networks that regulate haematopoietic development, including Stat3, Nr0b2, Ybx1 and App, and confirmed their roles using zebrafish, mouse and human models. Notably, CellComm revealed extensive crosstalk among signalling pathways and convergence on common transcriptional regulators, indicating a resilient developmental programme that ensures dynamic adaptation to changes in the embryonic environment. Our work provides an algorithm and data resource for the scientific community.

References

  1. Dev Cell. 2020 Oct 26;55(2):133-149.e6 [PMID: 32810442]
  2. Nature. 2014 Aug 21;512(7514):314-8 [PMID: 25119043]
  3. Cell Stem Cell. 2016 Apr 7;18(4):541-53 [PMID: 26971820]
  4. Nat Commun. 2017 Jul 17;8:16114 [PMID: 28714470]
  5. Stem Cell Reports. 2016 Nov 8;7(5):854-868 [PMID: 27746115]
  6. Nat Biotechnol. 2021 Apr;39(4):510-519 [PMID: 33257861]
  7. Stem Cell Reports. 2020 May 12;14(5):956-971 [PMID: 32302558]
  8. Nat Commun. 2016 Dec 01;7:13500 [PMID: 27905395]
  9. Blood. 2020 Aug 13;136(7):845-856 [PMID: 32392346]
  10. Nat Commun. 2018 Mar 1;9(1):892 [PMID: 29497036]
  11. Cell Death Dis. 2015 Feb 19;6:e1651 [PMID: 25695604]
  12. Int J Biochem Cell Biol. 1999 Oct;31(10):1053-74 [PMID: 10582339]
  13. Development. 1996 Dec;123:311-9 [PMID: 9007251]
  14. J Exp Med. 2017 Dec 4;214(12):3731-3751 [PMID: 29093060]
  15. Dev Cell. 2019 Jun 3;49(5):681-696.e6 [PMID: 31006651]
  16. Immunity. 2019 Jun 18;50(6):1439-1452.e5 [PMID: 31178352]
  17. Cell. 2014 Aug 14;158(4):889-902 [PMID: 25126792]
  18. Int J Biol Sci. 2013 May 08;9(5):435-43 [PMID: 23678293]
  19. Nature. 2007 Jun 21;447(7147):1007-11 [PMID: 17581586]
  20. Nat Commun. 2018 Jun 28;9(1):2517 [PMID: 29955049]
  21. Nat Cell Biol. 2013 Dec;15(12):1516-25 [PMID: 24240475]
  22. Nat Biotechnol. 2014 Jun;32(6):554-61 [PMID: 24837661]
  23. Cell. 2014 Aug 14;158(4):903-915 [PMID: 25126793]
  24. Nat Commun. 2020 Jan 29;11(1):586 [PMID: 31996681]
  25. Cell Res. 2020 May;30(5):376-392 [PMID: 32203131]
  26. Nat Biotechnol. 2019 Jul;37(7):810-818 [PMID: 31267104]
  27. Nat Immunol. 2009 Mar;10(3):289-96 [PMID: 19169261]
  28. J Exp Med. 2011 Jun 6;208(6):1305-15 [PMID: 21624936]
  29. PLoS Biol. 2007 Jan;5(1):e8 [PMID: 17214507]
  30. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12258-62 [PMID: 9356436]
  31. Nature. 2016 May 18;533(7604):487-92 [PMID: 27225119]
  32. Nat Rev Immunol. 2007 Feb;7(2):105-17 [PMID: 17259967]
  33. Nat Cell Biol. 2015 May;17(5):580-91 [PMID: 25915127]
  34. Nat Commun. 2016 Mar 08;7:10784 [PMID: 26952187]
  35. Front Neurosci. 2018 Aug 13;12:533 [PMID: 30150923]
  36. Biochem Biophys Res Commun. 2008 Jan 4;365(1):176-82 [PMID: 17983596]
  37. Cell Stem Cell. 2008 Jul 3;3(1):99-108 [PMID: 18593562]
  38. Genes Dev. 2020 Jul 1;34(13-14):950-964 [PMID: 32499402]
  39. Mol Cell Biochem. 2016 Jan;411(1-2):57-71 [PMID: 26407966]
  40. Nature. 2011 Jun 08;474(7350):220-4 [PMID: 21654806]

Grants

  1. T32 HL007574/NHLBI NIH HHS
  2. U01 HL134812/NHLBI NIH HHS
  3. R01 DK098241/NIDDK NIH HHS
  4. R24 DK092760/NIDDK NIH HHS
  5. RC2 DK120535/NIDDK NIH HHS
  6. F32 DK122715/NIDDK NIH HHS
  7. K01 DK129409/NIDDK NIH HHS

MeSH Term

Animals
Cell Differentiation
Hematopoiesis
Hematopoietic Stem Cells
Mesonephros
Mice
Zebrafish