Abhishek Kumar Verma, Aarfah Majid, Md Shahadat Hossain, Sk Faisal Ahmed, Mohammad Ashid, Ali Asger Bhojiya, Sudhir K Upadhyay, Naveen Kumar Vishvakarma, Mudassir Alam
This research aims to find out whether the 1, 2, 4-triazine and its derivatives have antifungal effects and can protect humans from infection with . Molecular docking and molecular dynamic simulation are widely used in modern drug design to target a particular protein with a ligand. We are interested in using molecular docking and molecular dynamics modeling to investigate the interaction between the derivatives of 1, 2, 4-triazine with enzyme Lanosterol 14-demethylase (CYP51) of . The inhibition of CYP51 is the main goal of our research. The 1, 2, 4-triazine and its derivatives have been docked to the CYP51 enzyme, which is involved in Multidrug Drug Resistance (MDR). Autodock tools were used to identify the binding affinities of molecules against the target proteins. Compared to conventional fluconazole, the molecular docking results indicated that each drug has a high binding affinity for CYP51 proteins and forms unbound interactions and hydrogen bonds with their active residues and surrounding allosteric residues. The docking contacts were made using a 10 ns MD simulation with nine molecules. RMSD, RMSF, hydrogen bonds, and the Rg all confirm these conclusions. In addition, these compounds were expected to have a favorable pharmacological profile and low toxicity. The compounds are being offered as scaffolds for the development of new antifungal drugs and as candidates for future testing.
J Biomol Struct Dyn. 2017 May;35(7):1446-1463
[PMID:
27142238]
J Comput Aided Mol Des. 2012 Jan;26(1):81-6
[PMID:
22160626]
Antimicrob Agents Chemother. 2009 Aug;53(8):3487-95
[PMID:
19470512]
Bioorg Med Chem Lett. 2010 Feb 1;20(3):979-82
[PMID:
20036534]
Eur J Med Chem. 2017 Apr 21;130:124-138
[PMID:
28242548]
Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367
[PMID:
29860391]
Bioorg Med Chem Lett. 2011 Aug 1;21(15):4471-5
[PMID:
21737273]
Int J Biol Macromol. 2019 Feb 1;122:1297-1304
[PMID:
30227205]
J Chem Inf Model. 2012 Nov 26;52(11):3099-105
[PMID:
23092397]
Microb Pathog. 2010 Jan;48(1):35-41
[PMID:
19835945]
J Mol Graph Model. 2017 Oct;77:72-85
[PMID:
28843462]
Comput Biol Chem. 2017 Dec;71:117-128
[PMID:
29153890]
J Biomol Struct Dyn. 2021 May;39(8):2857-2872
[PMID:
32295479]
Int J Mol Sci. 2019 Feb 18;20(4):
[PMID:
30781686]
J Biomol Struct Dyn. 2020 Oct;38(16):4687-4709
[PMID:
31674282]
Int J Mol Sci. 2012;13(9):10880-98
[PMID:
23109826]
Antimicrob Agents Chemother. 2012 Apr;56(4):2099-107
[PMID:
22252802]
Clin Microbiol Rev. 1999 Jan;12(1):40-79
[PMID:
9880474]
Pharm Res. 2002 Oct;19(10):1446-57
[PMID:
12425461]
Trends Mol Med. 2002 Feb;8(2):76-81
[PMID:
11815273]
Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26
[PMID:
11259830]
J Biomol Struct Dyn. 2004 Aug;22(1):91-9
[PMID:
15214809]
J Biomol Struct Dyn. 2021 May;39(8):2923-2931
[PMID:
32306854]
Sci Rep. 2016 May 18;6:26213
[PMID:
27188873]
J Comput Chem. 2010 Jan 30;31(2):455-61
[PMID:
19499576]
J Biomol Struct Dyn. 2021 May;39(8):2904-2913
[PMID:
32306822]
Arch Pharm (Weinheim). 2009 Dec;342(12):732-9
[PMID:
19899102]
J Chem Inf Model. 2019 Oct 28;59(10):4361-4373
[PMID:
31539242]
J Recept Signal Transduct Res. 2020 Dec;40(6):605-612
[PMID:
32476594]
J Chem Inf Model. 2010 Feb 22;50(2):317-25
[PMID:
20088581]
J Biomol Struct Dyn. 2021 Jul 9;:1-17
[PMID:
34243699]
Mol Inform. 2012 Feb;31(2):114-22
[PMID:
27476956]
J Comput Chem. 2015 May 15;36(13):996-1007
[PMID:
25824339]
J Recept Signal Transduct Res. 2013 Aug;33(4):234-43
[PMID:
23638723]
J Enzyme Inhib Med Chem. 2014 Apr;29(2):263-71
[PMID:
23488742]
Front Microbiol. 2017 Feb 01;8:92
[PMID:
28203225]
Biotechnol Prog. 2021 Mar;37(2):e3110
[PMID:
33314794]
Int J Mol Sci. 2017 Jan 17;18(1):
[PMID:
28106743]