miRNA-mediated alteration of sulfatase modifying factor 1 expression using self-assembled branched DNA nanostructures.

Kanchan Kumari, Avishek Kar, Ashok K Nayak, Sandip K Mishra, Umakanta Subudhi
Author Information
  1. Kanchan Kumari: DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology Bhubaneswar 751013 India usubudhi@immt.res.in subudhisai@gmail.com.
  2. Avishek Kar: DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology Bhubaneswar 751013 India usubudhi@immt.res.in subudhisai@gmail.com.
  3. Ashok K Nayak: DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology Bhubaneswar 751013 India usubudhi@immt.res.in subudhisai@gmail.com.
  4. Sandip K Mishra: Cancer Biology Laboratory, Institute of Life Sciences Bhubaneswar 751023 India.
  5. Umakanta Subudhi: DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology Bhubaneswar 751013 India usubudhi@immt.res.in subudhisai@gmail.com. ORCID

Abstract

Sulfatase enzymes catalyze sulfate ester hydrolysis, thus deficiencies of sulfatases lead to the accumulation of biomolecules resulting in several disorders. One of the important sulfatases is estrone sulfatase that converts inactive estrone sulfate to active estradiol. Posttranslational modification of highly conserved cysteine residue leads to unique formylglycine in the active site of sulfatases being critical for its catalytic activity. The essential factor responsible for this modification of sulfatase is Sulfatase-Modifying Factor 1 (SUMF1). The role of estrone sulfatase is well evident in breast cancer progression. However, the function and regulation of SUMF1 in cancer are not studied. In the present study, for the first time, we have assessed the expression of SUMF1 in breast cancer and report the oncogenic behavior upon overexpression of SUMF1. Although increased expression or activity of SUMF1 is anticipated based on its function, the expression of SUMF1 was found to be reduced in breast cancer cells at both mRNA and protein levels. An estrogen receptor (ER) dependent expression of SUMF1 was observed and higher SUMF1 expression is associated with improved breast cancer patient survival in ER-positive cases. However, high SUMF1 expression leads to reduced median survival in ER-negative breast cancer patients. Putative binding sites for miRNAs-106b-5p, 128-3p and 148b-3p were found at 3'-UTR of SUMF1. Since self-assembled branched DNA (bDNA) structures have emerged as a highly efficient strategy for targeting multiple miRNAs simultaneously, we studied the alteration in SUMF1 expression using bDNA nanostructures with a complementary sequence to miRNAs. The findings suggest the involvement of co-regulators and repressors in miRNA-mediated SUMF1 expression in breast cancer cells and reveal the therapeutic potential of SUMF1 in endocrine-related malignancies.

References

Int J Biol Macromol. 2019 Sep 15;137:337-345 [PMID: 31247230]
Steroids. 1982 May;39(5):497-507 [PMID: 6293125]
Breast Cancer Res Treat. 1986;7(1):35-44 [PMID: 3457610]
Sci Rep. 2019 Feb 13;9(1):1974 [PMID: 30760814]
Nucleic Acids Res. 2006 May 11;34(8):2294-304 [PMID: 16690972]
Front Genet. 2019 Apr 26;10:364 [PMID: 31080456]
Int J Biol Macromol. 2021 Apr 30;177:119-128 [PMID: 33609575]
J Steroid Biochem. 1989;34(1-6):155-63 [PMID: 2560511]
Eur J Cancer Clin Oncol. 1986 Dec;22(12):1495-501 [PMID: 3595675]
Respir Res. 2017 May 2;18(1):77 [PMID: 28464818]
Nat Nanotechnol. 2015 Jul;10(7):645-51 [PMID: 26098226]
Oncol Rep. 2016 Mar;35(3):1425-32 [PMID: 26707142]
Nat Biotechnol. 2020 Jan;38(1):39-43 [PMID: 31819259]
Cancer Epidemiol Biomarkers Prev. 2016 Jul;25(7):1081-9 [PMID: 27197275]
J Steroid Biochem Mol Biol. 2008 Mar;109(1-2):158-67 [PMID: 18337090]
DNA Cell Biol. 2019 Feb;38(2):198-207 [PMID: 30570350]
J Steroid Biochem Mol Biol. 1992 Mar;41(3-8):323-9 [PMID: 1580921]
Anticancer Drugs. 2017 Jul;28(6):588-595 [PMID: 28430743]
Translation (Austin). 2014 Jan 29;2(1):e27738 [PMID: 26779400]
N Engl J Med. 2002 Jan 31;346(5):340-52 [PMID: 11821512]
Front Pharmacol. 2019 Oct 17;10:1202 [PMID: 31680974]
Nucleic Acids Res. 2016 Jan 4;44(D1):D560-6 [PMID: 26626150]
Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a003178 [PMID: 20739412]
Orphanet J Rare Dis. 2015 Mar 15;10:31 [PMID: 25885655]
Breast Cancer Res Treat. 2010 Oct;123(3):725-31 [PMID: 20020197]
Biochem Biophys Res Commun. 2017 Apr 1;485(2):492-498 [PMID: 28189681]
Front Endocrinol (Lausanne). 2018 Aug 03;9:402 [PMID: 30123182]
Int J Mol Sci. 2020 May 13;21(10): [PMID: 32414121]
Nanoscale. 2017 Dec 21;10(1):195-202 [PMID: 29210414]
Oncol Lett. 2017 Oct;14(4):4736-4740 [PMID: 29085474]
Eur J Hum Genet. 2011 Mar;19(3):253-61 [PMID: 21224894]
Mol Diagn Ther. 2019 Apr;23(2):155-171 [PMID: 30610665]
Bioinformatics. 2019 May 1;35(9):1566-1572 [PMID: 30295699]
RNA Biol. 2018 Mar 4;15(3):338-352 [PMID: 29570036]
J Phys Chem B. 2019 May 2;123(17):3591-3597 [PMID: 30964993]
Nucleic Acids Res. 2019 Nov 18;47(20):10489-10505 [PMID: 31287874]
ACS Nano. 2017 Apr 25;11(4):4060-4066 [PMID: 28328200]
Target Oncol. 2020 Jun;15(3):261-278 [PMID: 32451752]
Chem Sci. 2018 Aug 8;9(38):7562-7568 [PMID: 30319757]
Chem Sci. 2017 Feb 1;8(2):1062-1067 [PMID: 28451245]
Annu Rev Genomics Hum Genet. 2005;6:355-79 [PMID: 16124866]
Gynecol Oncol. 2009 Jan;112(1):205-9 [PMID: 18947862]
Nanotechnol Sci Appl. 2019 Oct 15;12:25-46 [PMID: 31686793]
Acta Oncol. 2006;45(5):584-9 [PMID: 16864173]
J Clin Endocrinol Metab. 1972 Dec;35(6):887-91 [PMID: 4673713]
Breast Cancer (Auckl). 2010 May 20;4:35-41 [PMID: 20697531]
Gynecol Endocrinol. 2007 Jan;23(1):25-8 [PMID: 17484508]
Elife. 2015 Aug 12;4: [PMID: 26267216]

Word Cloud

Similar Articles

Cited By