Genomic Selection in Aquaculture Species.

François Allal, Nguyen Hong Nguyen
Author Information
  1. François Allal: MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France. francois.allal@ifremer.fr.
  2. Nguyen Hong Nguyen: School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.

Abstract

To date, genomic prediction has been conducted in about 20 aquaculture species, with a preference for intra-family genomic selection (GS). For every trait under GS, the increase in accuracy obtained by genomic estimated breeding values instead of classical pedigree-based estimation of breeding values is very important in aquaculture species ranging from 15% to 89% for growth traits, and from 0% to 567% for disease resistance. Although the implementation of GS in aquaculture is of little additional investment in breeding programs already implementing sib testing on pedigree, the deployment of GS remains sparse, but could be boosted by adaptation of cost-effective imputation from low-density panels. Moreover, GS could help to anticipate the effect of climate change by improving sustainability-related traits such as production yield (e.g., carcass or fillet yields), feed efficiency or disease resistance, and by improving resistance to environmental variation (tolerance to temperature or salinity variation). This chapter synthesized the literature in applications of GS in finfish, crustaceans and molluscs aquaculture in the present and future breeding programs.

Keywords

References

FAO (2020) The state of world fisheries and aquaculture 2020: sustainability in action. FAO, Rome
Gjedrem T, Robinson N, Rye M (2012) The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353:117–129. https://doi.org/10.1016/j.aquaculture.2012.04.008 [DOI: 10.1016/j.aquaculture.2012.04.008]
Gjedrem T, Rye M (2018) Selection response in fish and shellfish: a review. Rev Aquacult 10:168–179. https://doi.org/10.1111/raq.12154 [DOI: 10.1111/raq.12154]
Boudry P, Allal F, Aslam ML et al (2021) Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of International Council for the Exploration of the Sea (ICES) member countries. Aquacult Report 20:100700. https://doi.org/10.1016/j.aqrep.2021.100700 [DOI: 10.1016/j.aqrep.2021.100700]
Vu NT, Van Sang N, Phuc TH et al (2019) Genetic evaluation of a 15-year selection program for high growth in striped catfish Pangasianodon hypophthalmus. Aquaculture 509:221–226. https://doi.org/10.1016/j.aquaculture.2019.05.034 [DOI: 10.1016/j.aquaculture.2019.05.034]
Janssen K, Chavanne H, Berentsen P, Komen H (2017) Impact of selective breeding on European aquaculture. Aquaculture 472:8–16. https://doi.org/10.1016/j.aquaculture.2016.03.012 [DOI: 10.1016/j.aquaculture.2016.03.012]
Besson M, Aubin J, Komen H et al (2016) Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J Clean Prod 116:100–109. https://doi.org/10.1016/j.jclepro.2015.12.084 [DOI: 10.1016/j.jclepro.2015.12.084]
Besson M, Allal F, Chatain B et al (2019) Combining individual phenotypes of feed intake with genomic data to improve feed efficiency in sea bass. Front Genet 10:219 [DOI: 10.3389/fgene.2019.00219]
Vandeputte M, Bugeon J, Bestin A et al (2019) First evidence of realized selection response on fillet yield in rainbow trout Oncorhynchus mykiss, using sib selection or based on correlated ultrasound measurements. Front Genet 10:1225 [DOI: 10.3389/fgene.2019.01225]
Prchal M, Kocour M, Vandeputte M et al (2020) Morphological predictors of slaughter yields using 3D digitizer and their use in a common carp breeding program. Aquaculture 520:734993. https://doi.org/10.1016/j.aquaculture.2020.734993 [DOI: 10.1016/j.aquaculture.2020.734993]
De Verdal H, Komen H, Quillet E et al (2018) Improving feed efficiency in fish using selective breeding: a review. Rev Aquac 10:833–851 [DOI: 10.1111/raq.12202]
Houston RD, Haley CS, Hamilton A et al (2010) The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL. Heredity 105:318–327. https://doi.org/10.1038/hdy.2009.171 [DOI: 10.1038/hdy.2009.171]
Griot R, Allal F, Phocas F et al (2021) Optimization of genomic selection to improve disease resistance in two marine fishes, the European Sea Bass (Dicentrarchus labrax) and the Gilthead Sea Bream (Sparus aurata). Front Genet 12:665920. https://doi.org/10.3389/fgene.2021.665920 [DOI: 10.3389/fgene.2021.665920]
Nguyen NH (2016) Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: achievements, lessons and challenges. Fish Fish 17:483–506. https://doi.org/10.1111/faf.12122 [DOI: 10.1111/faf.12122]
Sonesson AK, Meuwissen TH, Goddard ME (2010) The use of communal rearing of families and DNA pooling in aquaculture genomic selection schemes. Genet Sel Evol 42:41. https://doi.org/10.1186/1297-9686-42-41 [DOI: 10.1186/1297-9686-42-41]
Hollenbeck CM, Johnston IA (2018) Genomic tools and selective breeding in molluscs. Front Genet 9:253. https://doi.org/10.3389/fgene.2018.00253 [DOI: 10.3389/fgene.2018.00253]
Vandeputte M, Haffray P (2014) Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Front Genet 5:432. https://doi.org/10.3389/fgene.2014.00432 [DOI: 10.3389/fgene.2014.00432]
Vandeputte M, Gagnaire P-A, Allal F (2019) The European sea bass: a key marine fish model in the wild and in aquaculture. Anim Genet 50:195–206 [DOI: 10.1111/age.12779]
Chavanne H, Janssen K, Hofherr J et al (2016) A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquacult Int 24:1287–1307. https://doi.org/10.1007/s10499-016-9985-0 [DOI: 10.1007/s10499-016-9985-0]
Liu S, Vallejo RL, Palti Y et al (2015) Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout. Front Genet 6:298. https://doi.org/10.3389/fgene.2015.00298 [DOI: 10.3389/fgene.2015.00298]
D’Ambrosio J, Morvezen R, Brard-Fudulea S et al (2020) Genetic architecture and genomic selection of female reproduction traits in rainbow trout. BMC Genomics 21:558. https://doi.org/10.1186/s12864-020-06955-7 [DOI: 10.1186/s12864-020-06955-7]
Palti Y, Vallejo RL, Gao G et al (2015) Detection and validation of QTL affecting bacterial cold water disease resistance in rainbow trout using restriction-site associated DNA sequencing. PLoS One 10:e0138435. https://doi.org/10.1371/journal.pone.0138435 [DOI: 10.1371/journal.pone.0138435]
Robledo D, Palaiokostas C, Bargelloni L et al (2018) Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev Aquac 10:670–682. https://doi.org/10.1111/raq.12193 [DOI: 10.1111/raq.12193]
Fuji K, Hasegawa O, Honda K et al (2007) Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 272:291–295. https://doi.org/10.1016/j.aquaculture.2007.07.210 [DOI: 10.1016/j.aquaculture.2007.07.210]
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819 [DOI: 10.1093/genetics/157.4.1819]
Hayes BJ, Bowman PJ, Chamberlain AC et al (2009) Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol 41:51. https://doi.org/10.1186/1297-9686-41-51 [DOI: 10.1186/1297-9686-41-51]
Yáñez JM, Newman S, Houston RD (2015) Genomics in aquaculture to better understand species biology and accelerate genetic progress. Front Genet 6:128. https://doi.org/10.3389/fgene.2015.00128 [DOI: 10.3389/fgene.2015.00128]
Zenger KR, Khatkar MS, Jones DB et al (2019) Genomic selection in aquaculture: application, limitations and opportunities with special reference to marine shrimp and pearl oysters. Front Genet 9:693. https://doi.org/10.3389/fgene.2018.00693 [DOI: 10.3389/fgene.2018.00693]
Houston RD, Bean TP, Macqueen DJ et al (2020) Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 21:389–409. https://doi.org/10.1038/s41576-020-0227-y [DOI: 10.1038/s41576-020-0227-y]
Hosoya S, Kikuchi K, Nagashima H et al (2017) Genomic selection in aquaculture. Bull Japan Fish Res Edu Agency 45:35–39
Palaiokostas C, Houston RD (2017) Genome-wide approaches to understanding and improving complex traits in aquaculture species. CAB Rev 12:1–10 [DOI: 10.1079/PAVSNNR201712055]
You X, Shan X, Shi Q (2020) Research advances in the genomics and applications for molecular breeding of aquaculture animals. Aquaculture 526:735357. https://doi.org/10.1016/j.aquaculture.2020.735357 [DOI: 10.1016/j.aquaculture.2020.735357]
de Roos APW, Schrooten C, Veerkamp RF, van Arendonk JAM (2011) Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. J Dairy Sci 94:1559–1567. https://doi.org/10.3168/jds.2010-3354 [DOI: 10.3168/jds.2010-3354]
Dupont-Nivet M, Vandeputte M, Haffray P, Chevassus B (2006) Effect of different mating designs on inbreeding, genetic variance and response to selection when applying individual selection in fish breeding programs. Aquaculture 252:161–170. https://doi.org/10.1016/j.aquaculture.2005.07.005 [DOI: 10.1016/j.aquaculture.2005.07.005]
Griot R, Allal F, Phocas F et al (2020) Genome-wide association studies for resistance to viral nervous necrosis in three populations of European sea bass (Dicentrarchus labrax) using a novel 57 k SNP array DlabChip. Aquaculture 530:735930 [DOI: 10.1016/j.aquaculture.2020.735930]
François Y, Cabon J, Morin T et al (2019) FORTIOR genetics, a platform to enhance disease resistance by genetic selection in aquaculture. In: 19th international conference on diseases of fish and shellfish, Porto, Portugal
VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423. https://doi.org/10.3168/jds.2007-0980 [DOI: 10.3168/jds.2007-0980]
Kilian A, Wenzl P, Huttner E et al (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol Biol 888:67–89. https://doi.org/10.1007/978-1-61779-870-2_5 [DOI: 10.1007/978-1-61779-870-2_5]
Tsai H-Y, Hamilton A, Tinch AE et al (2015) Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics 16:569. https://doi.org/10.1186/s12864-015-2117-9 [DOI: 10.1186/s12864-015-2117-9]
Tsai H-Y, Hamilton A, Tinch AE et al (2016) Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genet Sel Evol 48:47. https://doi.org/10.1186/s12711-016-0226-9 [DOI: 10.1186/s12711-016-0226-9]
Correa K, Bangera R, Figueroa R et al (2017) The use of genomic information increases the accuracy of breeding value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar). Genet Sel Evol 49:15. https://doi.org/10.1186/s12711-017-0291-8 [DOI: 10.1186/s12711-017-0291-8]
Ødegård J, Moen T, Santi N et al (2014) Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). Front Genet 5:402. https://doi.org/10.3389/fgene.2014.00402 [DOI: 10.3389/fgene.2014.00402]
Robledo D, Matika O, Hamilton A, Houston RD (2018) Genome-wide association and genomic selection for resistance to amoebic gill disease in Atlantic salmon. G3 8:1195–1203. https://doi.org/10.1534/g3.118.200075 [DOI: 10.1534/g3.118.200075]
Boison SA, Gjerde B, Hillestad B et al (2019) Genomic and transcriptomic analysis of amoebic gill disease resistance in Atlantic salmon (Salmo salar L.). Front Genet 10:68. https://doi.org/10.3389/fgene.2019.00068 [DOI: 10.3389/fgene.2019.00068]
Bangera R, Correa K, Lhorente JP et al (2017) Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics 18:121. https://doi.org/10.1186/s12864-017-3487-y [DOI: 10.1186/s12864-017-3487-y]
Vallejo RL, Leeds TD, Fragomeni BO et al (2016) Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: insights on genotyping methods and genomic prediction models. Front Genet 7:96. https://doi.org/10.3389/fgene.2016.00096 [DOI: 10.3389/fgene.2016.00096]
Vallejo RL, Leeds TD, Gao G et al (2017) Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genet Sel Evol 49:17. https://doi.org/10.1186/s12711-017-0293-6 [DOI: 10.1186/s12711-017-0293-6]
Vallejo RL, Silva RMO, Evenhuis JP et al (2018) Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: evidence that long-range LD is a major contributing factor. J Anim Breed Genet. https://doi.org/10.1111/jbg.12335
Vallejo RL, Cheng H, Fragomeni BO et al (2019) Genome-wide association analysis and accuracy of genome-enabled breeding value predictions for resistance to infectious hematopoietic necrosis virus in a commercial rainbow trout breeding population. Genet Sel Evol 51:47. https://doi.org/10.1186/s12711-019-0489-z [DOI: 10.1186/s12711-019-0489-z]
Yoshida GM, Carvalheiro R, Rodríguez FH et al (2019) Single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics 111:127–132. https://doi.org/10.1016/j.ygeno.2018.01.008 [DOI: 10.1016/j.ygeno.2018.01.008]
Yoshida GM, Bangera R, Carvalheiro R et al (2018) Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout. G3 8:719–726. https://doi.org/10.1534/g3.117.300499 [DOI: 10.1534/g3.117.300499]
Silva RMO, Evenhuis JP, Vallejo RL et al (2019) Whole-genome mapping of quantitative trait loci and accuracy of genomic predictions for resistance to columnaris disease in two rainbow trout breeding populations. Genet Sel Evol 51:42. https://doi.org/10.1186/s12711-019-0484-4 [DOI: 10.1186/s12711-019-0484-4]
Barría A, Christensen KA, Yoshida GM et al (2018) Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in Coho Salmon (Oncorhynchus kisutch) using ddRAD sequencing. G3 8:1183–1194. https://doi.org/10.1534/g3.118.200053 [DOI: 10.1534/g3.118.200053]
Palaiokostas C, Kocour M, Prchal M, Houston RD (2018) Accuracy of genomic evaluations of juvenile growth rate in common carp (Cyprinus carpio) using genotyping by sequencing. Front Genet 9:82. https://doi.org/10.3389/fgene.2018.00082 [DOI: 10.3389/fgene.2018.00082]
Palaiokostas C, Vesely T, Kocour M et al (2019) Optimizing genomic prediction of host resistance to koi herpesvirus disease in carp. Front Genet 10:543. https://doi.org/10.3389/fgene.2019.00543 [DOI: 10.3389/fgene.2019.00543]
Joshi R, Skaarud A, de Vera M et al (2020) Genomic prediction for commercial traits using univariate and multivariate approaches in Nile tilapia (Oreochromis niloticus). Aquaculture 516:734641. https://doi.org/10.1016/j.aquaculture.2019.734641 [DOI: 10.1016/j.aquaculture.2019.734641]
Yoshida GM, Lhorente JP, Correa K et al (2019) Genome-wide association study and cost-efficient genomic predictions for growth and fillet yield in Nile Tilapia (Oreochromis niloticus). G3 9:2597–2607. https://doi.org/10.1534/g3.119.400116 [DOI: 10.1534/g3.119.400116]
Palaiokostas C, Cariou S, Bestin A et al (2018) Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet Sel Evol 50:30. https://doi.org/10.1186/s12711-018-0401-2 [DOI: 10.1186/s12711-018-0401-2]
Palaiokostas C, Ferraresso S, Franch R et al (2016) Genomic prediction of resistance to pasteurellosis in Gilthead Sea Bream (Sparus aurata) using 2b-RAD sequencing. G3 6:3693–3700. https://doi.org/10.1534/g3.116.035220 [DOI: 10.1534/g3.116.035220]
Aslam ML, Carraro R, Bestin A et al (2018) Genetics of resistance to photobacteriosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing. BMC Genet 19:43. https://doi.org/10.1186/s12863-018-0631-x [DOI: 10.1186/s12863-018-0631-x]
Saura M, Carabaño MJ, Fernández A et al (2019) Disentangling genetic variation for resistance and endurance to scuticociliatosis in Turbot using pedigree and genomic information. Front Genet 10:539. https://doi.org/10.3389/fgene.2019.00539 [DOI: 10.3389/fgene.2019.00539]
Liu Y, Lu S, Liu F et al (2018) Genomic selection using BayesCπ and GBLUP for resistance against Edwardsiella tarda in Japanese flounder (Paralichthys olivaceus). Mar Biotechnol 20:559–565. https://doi.org/10.1007/s10126-018-9839-z [DOI: 10.1007/s10126-018-9839-z]
Garcia ALS, Bosworth B, Waldbieser G et al (2018) Development of genomic predictions for harvest and carcass weight in channel catfish. Genet Sel Evol 50:66. https://doi.org/10.1186/s12711-018-0435-5 [DOI: 10.1186/s12711-018-0435-5]
Dong L, Xiao S, Wang Q, Wang Z (2016) Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea). BMC Genomics 17:460. https://doi.org/10.1186/s12864-016-2756-5 [DOI: 10.1186/s12864-016-2756-5]
Nguyen NH, Premachandra HKA, Kilian A, Knibb W (2018) Genomic prediction using DArT-Seq technology for yellowtail kingfish Seriola lalandi. BMC Genomics 19:107. https://doi.org/10.1186/s12864-018-4493-4 [DOI: 10.1186/s12864-018-4493-4]
Liu G, Dong L, Gu L et al (2019) Evaluation of genomic selection for seven economic traits in yellow drum (Nibea albiflora). Mar Biotechnol 21:806–812. https://doi.org/10.1007/s10126-019-09925-7 [DOI: 10.1007/s10126-019-09925-7]
Wang Q, Yu Y, Yuan J et al (2017) Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei. BMC Genet 18:45. https://doi.org/10.1186/s12863-017-0507-5 [DOI: 10.1186/s12863-017-0507-5]
Wang Q, Yu Y, Li F et al (2017) Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp Litopenaeus vannamei. Chin J Ocean Limnol 35:1221–1229. https://doi.org/10.1007/s00343-017-6038-0 [DOI: 10.1007/s00343-017-6038-0]
Wang Q, Yu Y, Zhang Q et al (2019) Evaluation on the genomic selection in Litopenaeus vannamei for the resistance against Vibrio parahaemolyticus. Aquaculture 505:212–216 [DOI: 10.1016/j.aquaculture.2019.02.055]
Nguyen NH, Phuthaworn C, Knibb W (2020) Genomic prediction for disease resistance to Hepatopancreatic parvovirus and growth, carcass and quality traits in Banana shrimp Fenneropenaeus merguiensis. Genomics 112:2021–2027. https://doi.org/10.1016/j.ygeno.2019.11.014 [DOI: 10.1016/j.ygeno.2019.11.014]
Gutierrez AP, Matika O, Bean TP, Houston RD (2018) Genomic selection for growth traits in Pacific Oyster (Crassostrea gigas): potential of low-density marker panels for breeding value prediction. Front Genet 9:391. https://doi.org/10.3389/fgene.2018.00391 [DOI: 10.3389/fgene.2018.00391]
Gutierrez AP, Symonds J, King N et al (2020) Potential of genomic selection for improvement of resistance to ostreid herpesvirus in Pacific oyster (Crassostrea gigas). Anim Genet 51:249–257. https://doi.org/10.1111/age.12909 [DOI: 10.1111/age.12909]
Dou J, Li X, Fu Q et al (2016) Evaluation of the 2b-RAD method for genomic selection in scallop breeding. Sci Rep 6:19244. https://doi.org/10.1038/srep19244 [DOI: 10.1038/srep19244]
Wang Y, Sun G, Zeng Q et al (2018) Predicting growth traits with genomic selection methods in Zhikong Scallop (Chlamys farreri). Mar Biotechnol 20:769–779. https://doi.org/10.1007/s10126-018-9847-z [DOI: 10.1007/s10126-018-9847-z]
Campbell NR, Harmon SA, Narum SR (2015) Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour 15:855–867. https://doi.org/10.1111/1755-0998.12357 [DOI: 10.1111/1755-0998.12357]
Sun X, Liu D, Zhang X et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8:e58700. https://doi.org/10.1371/journal.pone.0058700 [DOI: 10.1371/journal.pone.0058700]
Tsairidou S, Hamilton A, Robledo D et al (2020) Optimizing low-cost genotyping and imputation strategies for genomic selection in Atlantic salmon. G3 10:581–590. https://doi.org/10.1534/g3.119.400800 [DOI: 10.1534/g3.119.400800]
Tsai H-Y, Matika O, Edwards SM et al (2017) Genotype imputation to improve the cost-efficiency of genomic selection in farmed Atlantic salmon. G3 7:1377–1383. https://doi.org/10.1534/g3.117.040717 [DOI: 10.1534/g3.117.040717]
Yoshida GM, Carvalheiro R, Lhorente JP et al (2018) Accuracy of genotype imputation and genomic predictions in a two-generation farmed Atlantic salmon population using high-density and low-density SNP panels. Aquaculture 491:147–154. https://doi.org/10.1016/j.aquaculture.2018.03.004 [DOI: 10.1016/j.aquaculture.2018.03.004]
Sae-Lim P, Gjerde B, Nielsen HM et al (2016) A review of genotype-by-environment interaction and micro-environmental sensitivity in aquaculture species. Rev Aquac 8:369–393. https://doi.org/10.1111/raq.12098 [DOI: 10.1111/raq.12098]
Saillant E, Dupont-Nivet M, Haffray P, Chatain B (2006) Estimates of heritability and genotype-environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254:139–147 [DOI: 10.1016/j.aquaculture.2005.10.018]
Smale DA, Wernberg T, Oliver ECJ et al (2019) Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat Clim Chang 9:306–312. https://doi.org/10.1038/s41558-019-0412-1 [DOI: 10.1038/s41558-019-0412-1]
Stillman JH (2019) Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34:86–100. https://doi.org/10.1152/physiol.00040.2018 [DOI: 10.1152/physiol.00040.2018]
Breitburg D, Levin LA, Oschlies A et al (2018) Declining oxygen in the global ocean and coastal waters. Science 359:eaam7240. https://doi.org/10.1126/science.aam7240 [DOI: 10.1126/science.aam7240]
Altieri AH, Gedan KB (2015) Climate change and dead zones. Glob Chang Biol 21:1395–1406. https://doi.org/10.1111/gcb.12754 [DOI: 10.1111/gcb.12754]
Mulder HA (2016) Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions. Front Genet 7:178. https://doi.org/10.3389/fgene.2016.00178 [DOI: 10.3389/fgene.2016.00178]
Yoshizaki G, Yazawa R (2019) Application of surrogate broodstock technology in aquaculture. Fish Sci 85:429–437. https://doi.org/10.1007/s12562-019-01299-y [DOI: 10.1007/s12562-019-01299-y]
Okutsu T, Shikina S, Kanno M et al (2007) Production of trout offspring from triploid salmon parents. Science 317:1517. https://doi.org/10.1126/science.1145626 [DOI: 10.1126/science.1145626]
Abdelrahman H, ElHady M, Alcivar-Warren A et al (2017) Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics 18:191. https://doi.org/10.1186/s12864-017-3557-1 [DOI: 10.1186/s12864-017-3557-1]
Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O (2021) Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat Genet 53:120–126. https://doi.org/10.1038/s41588-020-00756-0 [DOI: 10.1038/s41588-020-00756-0]
Gilly A, Ritchie GR, Southam L et al (2016) Very low-depth sequencing in a founder population identifies a cardioprotective APOC3 signal missed by genome-wide imputation. Hum Mol Genet 25:2360–2365. https://doi.org/10.1093/hmg/ddw088 [DOI: 10.1093/hmg/ddw088]
Xiang R, MacLeod IM, Daetwyler HD et al (2021) Genome-wide fine-mapping identifies pleiotropic and functional variants that predict many traits across global cattle populations. Nat Commun 12:860. https://doi.org/10.1038/s41467-021-21001-0 [DOI: 10.1038/s41467-021-21001-0]
Macqueen DJ, Primmer CR, Houston RD et al (2017) Functional annotation of all salmonid genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics 18:484. https://doi.org/10.1186/s12864-017-3862-8 [DOI: 10.1186/s12864-017-3862-8]
Robledo D, Taggart JB, Ireland JH et al (2016) Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with Infectious Pancreatic Necrosis virus reveals a marked contrast in immune response. BMC Genomics 17:279. https://doi.org/10.1186/s12864-016-2600-y [DOI: 10.1186/s12864-016-2600-y]
Luyer JL, Laporte M, Beacham TD et al (2017) Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. PNAS 114:12964–12969. https://doi.org/10.1073/pnas.1711229114 [DOI: 10.1073/pnas.1711229114]
Gavery MR, Roberts SB (2017) Epigenetic considerations in aquaculture. PeerJ 5:e4147. https://doi.org/10.7717/peerj.4147 [DOI: 10.7717/peerj.4147]
Moghadam H, Mørkøre T, Robinson N (2015) Epigenetics—potential for programming fish for aquaculture? J Marine Sci Eng 3:175–192. https://doi.org/10.3390/jmse3020175 [DOI: 10.3390/jmse3020175]
Jonsson B, Jonsson N (2014) Early environment influences later performance in fishes. J Fish Biol 85:151–188. https://doi.org/10.1111/jfb.12432 [DOI: 10.1111/jfb.12432]
Geurden I, Borchert P, Balasubramanian MN et al (2013) The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS One 8:e83162. https://doi.org/10.1371/journal.pone.0083162 [DOI: 10.1371/journal.pone.0083162]
Anastasiadi D, Vandeputte M, Sánchez-Baizán N et al (2018) Dynamic epimarks in sex-related genes predict gonad phenotype in the European sea bass, a fish with mixed genetic and environmental sex determination. Epigenetics 13:988–1011 [DOI: 10.1080/15592294.2018.1529504]
Brugman S, Ikeda-Ohtsubo W, Braber S et al (2018) A comparative review on microbiota manipulation: lessons from fish, plants, livestock, and human research. Front Nutr 5:80. https://doi.org/10.3389/fnut.2018.00080 [DOI: 10.3389/fnut.2018.00080]
Uren Webster TM, Consuegra S, Hitchings M, Garcia de Leaniz C Interpopulation variation in the atlantic salmon microbiome reflects environmental and genetic diversity. Appl Environ Microbiol 84:e00691-18. https://doi.org/10.1128/AEM.00691-18
Jenko J, Gorjanc G, Cleveland MA et al (2015) Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet Sel Evol 47:55. https://doi.org/10.1186/s12711-015-0135-3 [DOI: 10.1186/s12711-015-0135-3]
Johnsson M, Gaynor RC, Jenko J et al (2019) Removal of alleles by genome editing (RAGE) against deleterious load. Genet Sel Evol 51:14. https://doi.org/10.1186/s12711-019-0456-8 [DOI: 10.1186/s12711-019-0456-8]
Gratacap RL, Wargelius A, Edvardsen RB, Houston RD (2019) Potential of genome editing to improve aquaculture breeding and production. Trends Genet 35:672–684. https://doi.org/10.1016/j.tig.2019.06.006 [DOI: 10.1016/j.tig.2019.06.006]
Houston RD, Haley CS, Hamilton A et al (2008) Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178:1109–1115. https://doi.org/10.1534/genetics.107.082974 [DOI: 10.1534/genetics.107.082974]
Saberioon M, Gholizadeh A, Cisar P et al (2017) Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Rev Aquac 9:369–387. https://doi.org/10.1111/raq.12143 [DOI: 10.1111/raq.12143]
Føre M, Frank K, Norton T et al (2018) Precision fish farming: a new framework to improve production in aquaculture. Biosyst Eng 173:176–193. https://doi.org/10.1016/j.biosystemseng.2017.10.014 [DOI: 10.1016/j.biosystemseng.2017.10.014]
Yagiz Y, Balaban MO, Kristinsson HG et al (2009) Comparison of Minolta colorimeter and machine vision system in measuring colour of irradiated Atlantic salmon. J Sci Food Agric 89:728–730. https://doi.org/10.1002/jsfa.3467 [DOI: 10.1002/jsfa.3467]
Martos-Sitcha JA, Sosa J, Ramos-Valido D et al (2019) Ultra-low power sensor devices for monitoring physical activity and respiratory frequency in farmed fish. Front Physiol 10:667. https://doi.org/10.3389/fphys.2019.00667 [DOI: 10.3389/fphys.2019.00667]
Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866. https://doi.org/10.1038/nrg2897 [DOI: 10.1038/nrg2897]
Rincent R, Charpentier J-P, Faivre-Rampant P et al (2018) Phenomic selection is a low-cost and high-throughput method based on indirect predictions: proof of concept on wheat and poplar. G3 8:3961–3972. https://doi.org/10.1534/g3.118.200760 [DOI: 10.1534/g3.118.200760]

MeSH Term

Aquaculture
Disease Resistance
Genome
Genomics
Genotype
Humans
Models, Genetic
Phenotype
Polymorphism, Single Nucleotide
Selection, Genetic

Word Cloud

Similar Articles

Cited By