Sample preparation techniques for extraction of vitamin D metabolites from non-conventional biological sample matrices prior to LC-MS/MS analysis.

Anastasia Alexandridou, Dietrich A Volmer
Author Information
  1. Anastasia Alexandridou: Bioanalytical Chemistry, Humboldt University Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
  2. Dietrich A Volmer: Bioanalytical Chemistry, Humboldt University Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany. Dietrich.Volmer@hu-berlin.de.

Abstract

The determination of vitamin D metabolites as status marker or for diagnostic purposes is almost entirely conducted from blood serum or plasma. Other biological matrices, however, have also interested researchers, for two main reasons: (1) alternative matrices may allow non-invasive sampling, permit easier sample transfer and require less demanding storage conditions; and (2) the levels of vitamin D metabolites in other body compartments may further aid the understanding of vitamin D metabolism and function. Thus, the development of reliable and efficient sample preparation protocols for sample matrices other than serum/plasma, which will remove potential interferences and selectively extract the targeted metabolites, is of great importance. This review summarizes sample preparation methods for measurement of vitamin D metabolites using liquid chromatography-(tandem)mass spectrometry in more than ten different human tissues, including hair, saliva, adipose tissue, brain and others.

Keywords

References

Volmer DA, Stokes CS. 2016. Analysis of Vitamin D Metabolites by Mass Spectrometry. In: Wenk MR, editor. Encyclopedia of Lipidomics. Dordrecht: Springer Netherlands; 1–20. https://doi.org/10.1007/978-94-007-7864-1_107-1
Makris K, Sempos C, Cavalier E. The measurement of vitamin D metabolites part I—metabolism of vitamin D and the measurement of 25-hydroxyvitamin D. Hormones. 2020;19(2):81–96. https://doi.org/10.1007/s42000-019-00169-7 . [DOI: 10.1007/s42000-019-00169-7]
Altieri B, Cavalier E, Bhattoa HP, Pérez-López FR, López-Baena MT, Pérez-Roncero GR, et al. Vitamin D testing: advantages and limits of the current assays. Eur J Clin Nutr. 2020;74(2):231–47. https://doi.org/10.1038/s41430-019-0553-3 . [DOI: 10.1038/s41430-019-0553-3]
Volmer DA, Mendes LRBC, Stokes CS. Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions. Mass Spectrom Rev. 2015;34(1):2–23. https://doi.org/10.1002/mas.21408 . [DOI: 10.1002/mas.21408]
van den Ouweland JMW, Vogeser M, Bächer S. Vitamin D and metabolites measurement by tandem mass spectrometry. Rev Endocr Metab Disord. 2013;14(2):159–84. https://doi.org/10.1007/s11154-013-9241-0 . [DOI: 10.1007/s11154-013-9241-0]
van den Ouweland JMW. Analysis of vitamin D metabolites by liquid chromatography-tandem mass spectrometry. Trends Anal Chem. 2016;84:117–30. https://doi.org/10.1016/j.trac.2016.02.005 . [DOI: 10.1016/j.trac.2016.02.005]
Alexandridou A, Schorr P, Stokes CS, Volmer DA. Analysis of vitamin D metabolic markers by mass spectrometry: Recent progress regarding the “gold standard” method and integration into clinical practice. Mass Spectrom Rev. 2021. https://doi.org/10.1002/mas.21768 . [DOI: 10.1002/mas.21768]
Makris K, Sempos C, Cavalier E. The measurement of vitamin D metabolites part II — the measurement of the various vitamin D metabolites. Hormones. 2020;19(2):97–107. https://doi.org/10.1007/s42000-020-00188-9 . [DOI: 10.1007/s42000-020-00188-9]
Tai SSC, Nelson MA. Candidate Reference Measurement Procedure for the Determination of (24 R ),25-Dihydroxyvitamin D3 in Human Serum Using Isotope- Dilution Liquid Chromatography − Tandem Mass Spectrometry. Anal Chem. 2015;87(15):7964–70. https://doi.org/10.1021/acs.analchem.5b01861 . [DOI: 10.1021/acs.analchem.5b01861]
Yu S, Zhou W, Wang D, Yin Y, Cheng Q, Xie S, et al. Rapid liquid chromatography-tandem mass spectrometry method for determination of 24,25(OH)2D and 25OHD with efficient separation of 3-epi analogs. J Steroid Biochem Mol Biol. 2019;187:146–51. https://doi.org/10.1016/j.jsbmb.2018.11.012 . [DOI: 10.1016/j.jsbmb.2018.11.012]
Wang S, Wang S, Yang R, Zhou W, Li H, Chen W. A simple and precise LC-MS/MS method for the simultaneous determination of serum 25-hydroxyvitamin D3 and D2 without interference from the C3 epimer. Anal Methods. 2015;7:5254–61. https://doi.org/10.1039/C5AY00971E . [DOI: 10.1039/C5AY00971E]
Le J, Yuan T-F, Geng J-Q, Wang S-T, Li Y, Zhang B-H. Acylation derivatization based LC-MS analysis of 25-hydroxyvitamin D from finger-prick blood. J Lipid Res. 2019;60(5):1058–64. https://doi.org/10.1194/jlr.D092197 . [DOI: 10.1194/jlr.D092197]
Jumaah F, Larsson S, Essén S, Cunico LP, Holm C, Turner C, et al. A rapid method for the separation of vitamin D and its metabolites by ultra-high performance supercritical fluid chromatography – mass spectrometry. J Chromatogr A. 2016;1440:191–200. https://doi.org/10.1016/j.chroma.2016.02.043 . [DOI: 10.1016/j.chroma.2016.02.043]
Chin S-F, Osman J, Jamal R. Simultaneous determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human serum by ultra performance liquid chromatography: An economical and validated method with bovine serum albumin. Clin Chim Acta. 2018;485:60–6. https://doi.org/10.1016/j.cca.2018.06.024 . [DOI: 10.1016/j.cca.2018.06.024]
Higashi T, Suzuki M, Hanai J, Inagaki S, Min JZ, Shimada K, et al. A specific LC/ESI-MS/MS method for determination of 25-hydroxyvitamin D3 in neonatal dried blood spots containing a potential interfering metabolite, 3-epi-25-hydroxyvitamin D3. J Sep Sci. 2011;34(7):725–32. https://doi.org/10.1002/jssc.201000911 . [DOI: 10.1002/jssc.201000911]
Kassim NSA, Shaw PN, Hewavitharana AK. Simultaneous determination of 12 vitamin D compounds in human serum using online sample preparation and liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2018;1533:57–65. https://doi.org/10.1016/j.chroma.2017.12.012 . [DOI: 10.1016/j.chroma.2017.12.012]
Gao C, Bergagnini-Kolev MC, Liao MZ, Wang Z, Wong T, Calamia JC, et al. Simultaneous quantification of 25-hydroxyvitamin D3–3-sulfate and 25- hydroxyvitamin D3–3-glucuronide in human serum and plasma using liquid chromatography – tandem mass spectrometry coupled with DAPTAD-derivatization. J Chromatogr B. 2017;1060:158–65. https://doi.org/10.1016/j.jchromb.2017.06.017 . [DOI: 10.1016/j.jchromb.2017.06.017]
Geib T, Sleno L, Hall RA, Stokes CS, Volmer DA. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS / MS Analysis of 25-Hydroxyvitamin D in Human Serum. J Am Soc Mass Spectrom. 2016;27(8):1404–10. https://doi.org/10.1007/s13361-016-1412-2 . [DOI: 10.1007/s13361-016-1412-2]
Jenkinson C, Taylor AE, Hassan-Smith ZK, Adams JS, Stewart PM, Hewison M, et al. High throughput LC-MS/MS method for the simultaneous analysis of multiple vitamin D analytes in serum. J Chromatogr B. 2016;1014:56–63. https://doi.org/10.1016/j.jchromb.2016.01.049 . [DOI: 10.1016/j.jchromb.2016.01.049]
Petruzziello F, Grand-Guillaume-Perrenoud A, Thorimbert A, Fogwill M, Rezzi S. Quantitative profiling of endogenous fat-soluble vitamins and carotenoids in human plasma using an improved UHPSFC-ESI-MS interface Quantitative profiling of endogenous fat-soluble vitamins and carotenoids in human plasma using an improved UHPSFC-ESI-MS. Anal Chem. 2017;89(14):7615–22. https://doi.org/10.1021/acs.analchem.7b01476 . [DOI: 10.1021/acs.analchem.7b01476]
Satoh M, Ishige T, Ogawa S, Nishimura M, Matsushita K, Higashi T, et al. Development and validation of the simultaneous measurement of four vitamin D metabolites in serum by LC–MS/MS for clinical laboratory applications. Anal Bioanal Chem. 2016;408(27):7617–27. https://doi.org/10.1007/s00216-016-9821-4 . [DOI: 10.1007/s00216-016-9821-4]
Tang JCY, Nicholls H, Piec I, Washbourne CJ, Dutton JJ, Jackson S, et al. Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio with 25-hydroxyvitamin D established using a newly developed LC–MS/MS method. J Nutr Biochem. 2017;46:21–9. https://doi.org/10.1016/j.jnutbio.2017.04.005 . [DOI: 10.1016/j.jnutbio.2017.04.005]
Saito Y, Nakagami K. Sample preparation for the analysis of drugs in biological fluids. Handb Anal Sep. 2020;7:1–13. https://doi.org/10.1016/B978-0-444-64066-6.00001-0 . [DOI: 10.1016/B978-0-444-64066-6.00001-0]
Porteous CE, Coldwell RD, Trafford DJH, Makin HLJ. Recent developments in the measurement of vitamin D and its metabolites in human body fluids. J Steroid Biochem. 1987;28(6):785–801. https://doi.org/10.1016/0022-4731(87)90413-4 . [DOI: 10.1016/0022-4731(87)90413-4]
Higashi T, Shimada K, Toyo’oka T. Advances in determination of vitamin D related compounds in biological samples using liquid chromatography-mass spectrometry: A review. J Chromatogr B. 2010;878(20):1654–61. https://doi.org/10.1016/j.jchromb.2009.11.026 . [DOI: 10.1016/j.jchromb.2009.11.026]
Yin S, Yang Y, Wu L, Li Y, Sun C. Recent advances in sample preparation and analysis methods for vitamin D and its analogues in different matrices. TrAC - Trends Anal Chem. 2019;1(110):204–20. https://doi.org/10.1016/j.trac.2018.11.008 . [DOI: 10.1016/j.trac.2018.11.008]
Socas-Rodríguez B, Sandahl M, Holm C, Turner C. Recent advances in the analysis of vitamin D and its metabolites in food matrices. Separations. 2020;7(2):36. https://doi.org/10.3390/separations7020036%0A . [DOI: 10.3390/separations7020036%0A]
Peng J, Tang F, Zhou R, Xie X, Li S, Xie F, et al. New techniques of on-line biological sample processing and their application in the field of biopharmaceutical analysis. Acta Pharm Sin B. 2016;6(6):540–51. https://doi.org/10.1016/j.apsb.2016.05.016 . [DOI: 10.1016/j.apsb.2016.05.016]
Jones R, Golding J. Choosing the types of biological sample to collect in longitudinal birth cohort studies. Paediatr Perinat Epidemiol. 2009;23:103–13. https://doi.org/10.1111/j.1365-3016.2008.01000.x . [DOI: 10.1111/j.1365-3016.2008.01000.x]
Gandhi M, Bacchetti P, Ofokotun I, Jin C, Ribaudo HJ, Haas DW, et al. Antiretroviral concentrations in hair strongly predict virologic response in a large human immunodeficiency virus treatment-naive clinical trial. Clin Infect Dis. 2019;68(6):1044–7. https://doi.org/10.1093/cid/ciy764%0A . [DOI: 10.1093/cid/ciy764%0A]
Cisneros C, Thompson T, Baluyot N, Smith AC, Tapavicza E. The role of tachysterol in Vitamin D photosynthesis-a non-adiabatic molecular dynamics study. Phys Chem Chem Phys. 2017;19(8):5763–77. https://doi.org/10.1039/C6CP08064B . [DOI: 10.1039/C6CP08064B]
Bikle DD. 2014 Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem Biol. 21(3):319–29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
Jenkinson C. The vitamin D metabolome: An update on analysis and function. Cell Biochem Funct. 2019;37(6):408–23. https://doi.org/10.1002/cbf.3421 . [DOI: 10.1002/cbf.3421]
Li J, Papadopoulos V, Vihma V. Steroid biosynthesis in adipose tissue. Steroids. 2015;103:89–104. https://doi.org/10.1016/j.steroids.2015.03.016 . [DOI: 10.1016/j.steroids.2015.03.016]
Mawer EB, Backhouse J, Holman CA, Lumb GA, Stanbury SW. The distribution and storage of vitamin D and its metabolites in human tissues. Clin Sci. 1972;43(3):413–31. https://doi.org/10.1042/cs0430413 . [DOI: 10.1042/cs0430413]
Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3. https://doi.org/10.1093/ajcn/77.5.1342 . [DOI: 10.1093/ajcn/77.5.1342]
Didriksen A, Burild A, Jakobsen J, Fuskevåg OM, Jorde R. Vitamin D3 increases in abdominal subcutaneous fat tissue after supplementation with vitamin D3. Eur J Endocrinol. 2015;172(3):235–41. https://doi.org/10.1530/EJE-14-0870 . [DOI: 10.1530/EJE-14-0870]
Blum M, Dolnikowski G, Seyoum E, Harris SS, Booth SL, Peterson J, et al. Vitamin D3 in fat tissue. Endocrine. 2008;33(1):90–4. https://doi.org/10.1007/s12020-008-9051-4 . [DOI: 10.1007/s12020-008-9051-4]
Martinaityte I, Kamycheva E, Didriksen A, Jakobsen J, Jorde R. Vitamin D stored in fat tissue during a 5-year intervention affects serum 25-hydroxyvitamin d levels the following year. J Clin Endocrinol Metab. 2017;102(10):3731–8. https://doi.org/10.1210/jc.2017-01187 . [DOI: 10.1210/jc.2017-01187]
Burild A, Frandsen HL, Poulsen M, Jakobsen J. Quantification of physiological levels of vitamin D3 and 25-hydroxyvitamin D3 in porcine fat and liver in subgram sample sizes. J Sep Sci. 2014;37(19):2659–63. https://doi.org/10.1002/jssc.201400548 . [DOI: 10.1002/jssc.201400548]
Malmberg P, Karlsson T, Svensson H, Lönn M, Carlsson NG, Sandberg AS, et al. A new approach to measuring vitamin D in human adipose tissue using time-of-flight secondary ion mass spectrometry: A pilot study. J Photochem Photobiol B Biol. 2014;138:295–301. https://doi.org/10.1016/j.jphotobiol.2014.06.008 . [DOI: 10.1016/j.jphotobiol.2014.06.008]
Pitkin RM, Reynolds WA. Fetal ingestion and metabolism of amniotic fluid protein. Am J Obstet Gynecol. 1975;123(4):356–63. https://doi.org/10.1016/S0002-9378(16)33436-6 . [DOI: 10.1016/S0002-9378(16)33436-6]
Lazebnik R, Eisenberg Z, Lazebnik N, Spirer Z, Weisman Y. Vitamin D Metabolites in Amniotic Fluid. J Clin Endocrinol Metab. 1983;56(3):632–4. https://doi.org/10.1210/jcem-56-3-632 . [DOI: 10.1210/jcem-56-3-632]
Koskinen T, Kuoppala T, Tuimala R. Amniotic fluid 25-hydroxyvitamin D concentrations in normal and complicated pregnancy. Eur J Obstet Gynecol Reprod Biol. 1986;21(1):1–5. https://doi.org/10.1016/0028-2243(86)90039-0 . [DOI: 10.1016/0028-2243(86)90039-0]
Le J, Yuan TF, Zhang Y, Wang ST, Li Y. New LC-MS/MS method with single-step pretreatment analyzes fat-soluble vitamins in plasma and amniotic fluid. J Lipid Res. 2018;59(9):1783–90. https://doi.org/10.1194/jlr.D087569 . [DOI: 10.1194/jlr.D087569]
He X, Jiang P, Xue Y, Zhu WY, Deng Y, Yan M, et al. Simultaneous analysis of 25OHD3 and 24,25(OH)2D3 both in human serum and cerebrospinal fluid by LC-MS/MS. Anal Methods. 2016;8(11):2400–7. https://doi.org/10.1039/C5AY01526J . [DOI: 10.1039/C5AY01526J]
Eyles DW, Burne TH, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol. 2013;34(1):47–64. https://doi.org/10.1016/j.yfrne.2012.07.001 . [DOI: 10.1016/j.yfrne.2012.07.001]
Balabanova S, Richter HP, Antoniadis G, Homoki J, Kremmer N, Hanle J, et al. 25-hydroxyvitamin D, 24, 25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D in human cerebrospinal fluid. Klin Wochenschr. 1984;62(22):1086–90. https://doi.org/10.1007/BF01711378 . [DOI: 10.1007/BF01711378]
Holmøy T, Moen SM, Gundersen TA, Holick MF, Fainardi E, Castellazzi M, et al. 25-Hydroxyvitamin D in cerebrospinal fluid during relapse and remission of multiple sclerosis. Mult Scler J. 2009;15(11):1280–5. https://doi.org/10.1177/1352458509107008 . [DOI: 10.1177/1352458509107008]
Moghtaderi A, Tamadon GH, Haghighi F. 25-hydroxyvitamin D3 concentration in serum and cerebrospinal fluid of patients with remitting-relapse multiple sclerosis. Prague Med Rep. 2013;114(3):162–71. https://doi.org/10.14712/23362936.2014.18 . [DOI: 10.14712/23362936.2014.18]
Johansson P, Almqvist EG, Johansson JO, Mattsson N, Andreasson U, Hansson O, et al. Cerebrospinal fluid (CSF) 25-hydroxyvitamin D concentration and CSF acetylcholinesterase activity are reduced in patients with Alzheimer’s disease. PLoS ONE. 2013;8(11): e81989. https://doi.org/10.1371/journal.pone.0081989 . [DOI: 10.1371/journal.pone.0081989]
Lee DH, Kim JH, Jung MH, Cho MC. Total 25-hydroxy Vitamin D level in cerebrospinal fluid correlates with serum total, bioavailable, and free 25-hydroxy Vitamin D levels in Korean population. PLoS ONE. 2019;14(3): e0213389. https://doi.org/10.1371/journal.pone.0213389 . [DOI: 10.1371/journal.pone.0213389]
Fu X, Dolnikowski GG, Patterson WB, Dawson-Hughes B, Zheng T, Morris MC, et al. 2019 Determination of vitamin D and its metabolites in human brain using an Ultra-Pressure LC–Tandem Mass Spectra method. Curr Dev Nutr. 3(7):nzz074 https://doi.org/10.1093/cdn/nzz074
Ahonen L, Maire FBR, Savolainen M, Kopra J, Vreeken RJ, Hankemeier T, et al. Analysis of oxysterols and vitamin D metabolites in mouse brain and cell line samples by ultra-high-performance liquid chromatography-atmospheric pressure photoionization-mass spectrometry. J Chromatogr A. 2014;1364:214–22. https://doi.org/10.1016/j.chroma.2014.08.088 . [DOI: 10.1016/j.chroma.2014.08.088]
Xue Y, He X, Li H De, Deng Y, Yan M, Cai HL, et al. 2015 Simultaneous quantification of 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in rats shows strong correlations between serum and brain tissue levels. Int J Endocrinol. 2015. https://doi.org/10.1155/2015/296531
Fu X, Shea MK, Dolnikowski GG, Patterson WB, Dawson-Hughes B, Holland TM, et al. Vitamin D and vitamin K concentrations in human brain tissue are influenced by freezer storage time: the memory and aging project. J Nutr. 2021;151(1):104–8. https://doi.org/10.1093/jn/nxaa336 . [DOI: 10.1093/jn/nxaa336]
Antoniucci DM, Black DM, Sellmeyer DE. Serum 25-hydroxyvitamin D is unaffected by multiple freeze-thaw cycles. Clin Chem. 2005;51(1):258–61. https://doi.org/10.1373/clinchem.2004.041954 . [DOI: 10.1373/clinchem.2004.041954]
Agborsangaya C, Toriola AT, Grankvist K, Surcel HM, Holl K, Parkkila S, et al. The effects of storage time and sampling season on the stability of serum 25-hydroxy vitamin D and androstenedione. Nutr Cancer. 2010;62(1):51–7. https://doi.org/10.1080/01635580903191460 . [DOI: 10.1080/01635580903191460]
Borai A, Khalil H, Alghamdi B, Alhamdi R, Ali N, Bahijri S, et al. The pre-analytical stability of 25-hydroxyvitamin D: Storage and mixing effects. J Clin Lab Anal. 2020;34(2): e23037. https://doi.org/10.1002/jcla.23037 . [DOI: 10.1002/jcla.23037]
Khaksari M, Mazzoleni LR, Ruan C, Kennedy RT, Minerick AR. Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry. Exp Eye Res. 2017;155:54–63. https://doi.org/10.1016/j.exer.2016.12.007 . [DOI: 10.1016/j.exer.2016.12.007]
Lu X, Elizondo RA, Nielsen R, Christensen EI, Yang J, Hammock BD, et al. Vitamin D in tear fluid. Investig Ophthalmol Vis Sci. 2015;56(10):5880–7. https://doi.org/10.1167/iovs.15-17177 . [DOI: 10.1167/iovs.15-17177]
Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol. 2008;181(10):7090–9. https://doi.org/10.4049/jimmunol.181.10.7090 . [DOI: 10.4049/jimmunol.181.10.7090]
Alsalem JA, Patel D, Susarla R, Coca-Prados M, Bland R, Walker EA, et al. Characterization of vitamin D production by human ocular barrier cells. Investig Ophthalmol Vis Sci. 2014;55(4):2140–7. https://doi.org/10.1167/iovs.13-13019 . [DOI: 10.1167/iovs.13-13019]
Goksugur SB, Erdurmus M, Bekdas M, Erkocoglu M, Agca S, Tosun M, et al. Tear and serum vitamin D levels in children with allergic rhinoconjunctivitis. Allergol Immunopathol (Madr). 2015;43(6):533–7. https://doi.org/10.1016/j.aller.2014.10.004 . [DOI: 10.1016/j.aller.2014.10.004]
Lai YT, Cerquinho RG, Perez MM, da Alves BCA, Pereira EC, Azzalis LA, et al. Determination of vitamin D in tears of healthy individuals by the electrochemiluminescence method. J Clin Lab Anal. 2019;33(4):e22830. https://doi.org/10.1002/jcla.22830 . [DOI: 10.1002/jcla.22830]
Sethu S, Shetty R, Deshpande K, Pahuja N, Chinnappaiah N, Agarwal A, et al. Correlation between tear fluid and serum vitamin D levels. Eye Vis. 2016;3(1):1–5. https://doi.org/10.1186/s40662-016-0053-7 . [DOI: 10.1186/s40662-016-0053-7]
Khaksari M, Mazzoleni LR, Ruan C, Kennedy RT, Minerick AR. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum. Data Br. 2017;11:316–30. https://doi.org/10.1016/j.dib.2017.02.033 . [DOI: 10.1016/j.dib.2017.02.033]
Cassin B, Solomon S, Rubin ML. Dictionary of eye terminology. Gainesville: Triad Publishing Company; 1990. p. 304.
Rullo J, Pennimpede T, Mehraban Far P, Strube YN, Irrcher I, Urton T, et al. Intraocular calcidiol: Uncovering a role for vitamin D in the eye. J Steroid Biochem Mol Biol. 2020;197: 105536. https://doi.org/10.1016/j.jsbmb.2019.105536 . [DOI: 10.1016/j.jsbmb.2019.105536]
Fabregat-Cabello N, Darimont P, Huyghebaert L, Reynier P, Annweiler C, Milea D, et al. Liquid chromatography-tandem mass spectrometry for monitoring vitamin D hydroxymetabolites in human aqueous humor. Anal Methods. 2019;11(41):5282–8. https://doi.org/10.1039/C9AY01896D . [DOI: 10.1039/C9AY01896D]
Cho MC, Kim RB, Ahn JY, Yoo WS, Kim SJ. Aqueous humor and serum 25-Hydroxyvitamin D levels in patients with cataracts. BMC Ophthalmol. 2020;20(1):1–11. https://doi.org/10.1186/s12886-019-1293-9 . [DOI: 10.1186/s12886-019-1293-9]
Kim KL, Moon SY, Noh HM, Park SP, Kim YK. Serum and aqueous humor vitamin D levels in patients with diabetic macular edema. Graefe’s Arch Clin Exp Ophthalmol. 2019;257(6):1191–8. https://doi.org/10.1007/s00417-019-04305-2 . [DOI: 10.1007/s00417-019-04305-2]
Chandy DD, Kare J, Singh SN, Agarwal A, Das V, Singh U, et al. Effect of vitamin D supplementation, directly or via breast milk for term infants, on serum 25 hydroxyvitamin D and related biochemistry, and propensity to infection : a randomised placebo-controlled trial. Br J Nutr. 2016;116(1):52–8. https://doi.org/10.1017/S0007114516001756 . [DOI: 10.1017/S0007114516001756]
Reeve L, Chesney R, DeLuca H. Vitamin D of human milk: identification biologically active forms. Am J Clin Nutr. 1982;36(1):122–6. https://doi.org/10.1093/ajcn/36.1.122 . [DOI: 10.1093/ajcn/36.1.122]
Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122(5):1142–52. https://doi.org/10.1542/peds.2008-1862 . [DOI: 10.1542/peds.2008-1862]
Daly SE, Hartmann PE. Infant Demand and Milk Supply. Part 1: Infant Demand and Milk Production in Lactating Women. J Hum Lact. 1995;11(1):21–6. https://doi.org/10.1177/089033449501100119 . [DOI: 10.1177/089033449501100119]
Kent JC, Gardner H, Geddes DT. Breastmilk production in the first 4 weeks after birth of term infants. Nutrients. 2016;8(12):9–14. https://doi.org/10.3390/nu8120756 . [DOI: 10.3390/nu8120756]
Hollis BW, Wagner CL. Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am J Clin Nutr. 2004;80(6):1752S – 1758. https://doi.org/10.1093/ajcn/80.6.1752S . [DOI: 10.1093/ajcn/80.6.1752S]
Bae YJ, Kratzsch J. Vitamin D and calcium in the human breast milk. Best Pract Res Clin Endocrinol Metab. 2018;32(1):39–45. https://doi.org/10.1016/j.beem.2018.01.007 . [DOI: 10.1016/j.beem.2018.01.007]
Kamao M, Tsugawa N, Suhara Y, Wada A, Mori T, Murata K, et al. Quantification of fat-soluble vitamins in human breast milk by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2007;859(2):192–200. https://doi.org/10.1016/j.jchromb.2007.09.023 . [DOI: 10.1016/j.jchromb.2007.09.023]
Hollis BW. Individual quantitation of vitamin D2, vitamin D3, 25-hydroxyvitamin D2, and 25-hydroxyvitamin D3 in human milk. Anal Biochem. 1983;131(1):211–9. https://doi.org/10.1016/0003-2697(83)90157-4 . [DOI: 10.1016/0003-2697(83)90157-4]
við Streym S, Højskov CS, Møller UK, Heickendorff L, Vestergaard P, Mosekilde L, et al. Vitamin D content in human breast milk: A 9-mo follow-up study. Am J Clin Nutr. 2016;103(1):107–14. https://doi.org/10.3945/ajcn.115.115105 . [DOI: 10.3945/ajcn.115.115105]
Gomes FP, Shaw PN, Hewavitharana AK. Determination of four sulfated vitamin D compounds in human biological fluids by liquid chromatography – tandem mass spectrometry. J Chromatogr B. 2016;1009–1010:80–6. https://doi.org/10.1016/j.jchromb.2015.12.014 . [DOI: 10.1016/j.jchromb.2015.12.014]
Wang LC, Chiang BL, Huang YM, Shen PT, Huang HY, Lin BF. Lower vitamin D levels in the breast milk is associated with atopic dermatitis in early infancy. Pediatr Allergy Immunol. 2020;31(3):258–64. https://doi.org/10.1111/pai.13179 . [DOI: 10.1111/pai.13179]
Gomes FP, Shaw PN, Whitfield K, Hewavitharana AK. Simultaneous quantitative analysis of eight vitamin D analogues in milk using liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2015;891:211–20. https://doi.org/10.1016/j.aca.2015.08.017 . [DOI: 10.1016/j.aca.2015.08.017]
Oberson JM, Bénet S, Redeuil K, Campos-Giménez E. Quantitative analysis of vitamin D and its main metabolites in human milk by supercritical fluid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem. 2020;412:365–75. https://doi.org/10.1007/s00216-019-02248-5 . [DOI: 10.1007/s00216-019-02248-5]
Gjerde J, Kjellevold M, Dahl L, Berg T, Bøkevoll A, Markus MW. Validation and determination of 25(OH) vitamin D and 3-Epi25(OH)D3 in breastmilk and maternal-and infant plasma during breastfeeding. Nutrients. 2020;12(8):2271. https://doi.org/10.3390/nu12082271 . [DOI: 10.3390/nu12082271]
Zgaga L, Laird E, Healy M. 25-hydroxyvitamin D measurement in human hair: Results from a proof-of-concept study. Nutrients. 2019;11(2):423. https://doi.org/10.3390/nu11020423 . [DOI: 10.3390/nu11020423]
Shah I, Mansour M, Jobe S, Salih E, Naughton D, Salman AS. A Non-Invasive Hair Test to Determine Vitamin D3 Levels. Moleculs. 2021;26(11):3269. https://doi.org/10.3390/molecules26113269 . [DOI: 10.3390/molecules26113269]
Cooper GAA, Kronstrand R, Kintz P. Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Int. 2012;218(1–3):20–4. https://doi.org/10.1016/j.forsciint.2011.10.024 . [DOI: 10.1016/j.forsciint.2011.10.024]
Kummer N, Wille SMR, Di Fazio V, Fernández MDMR, Yegles M, Lambert WEE, et al. Impact of the grinding process on the quantification of ethyl glucuronide in hair using a validated UPLC-ESI-MS-MS method. J Anal Toxicol. 2015;39(1):17–23. https://doi.org/10.1093/jat/bku108 . [DOI: 10.1093/jat/bku108]
Fairney A, Saphier PW. Studies on the presence of 25-hydroxyvitamin D in human saliva. Br J Nutr. 1987;57(1):13–25. https://doi.org/10.1079/BJN19870005 . [DOI: 10.1079/BJN19870005]
Higashi T, Shibayama Y, Fuji M, Shimada K. Liquid chromatography – tandem mass spectrometric method for the determination of salivary 25-hydroxyvitamin D3: a noninvasive tool for the assessment of vitamin D status. Anal Bioanal Chem. 2008;391(1):229–38. https://doi.org/10.1007/s00216-007-1780-3 . [DOI: 10.1007/s00216-007-1780-3]
Clarke MW, Black LJ, Hart PH, Jones AP, Palmer DJ, Siafarikas A, et al. The challenges of developing and optimising an assay to measure 25-hydroxyvitamin D in saliva. J Steroid Biochem Mol Biol challen. 2019;194: 105437. https://doi.org/10.1016/j.jsbmb.2019.105437 . [DOI: 10.1016/j.jsbmb.2019.105437]
Agha-Hosseini F, Mirzaii-Dizgah I, Mirjalili N. Unstimulated whole saliva 25-hydroxycholecalciferol in patients with xerostomia in menopausal women. Aging Clin Exp Res. 2013;25(2):147–51. https://doi.org/10.1007/s40520-013-0023-z . [DOI: 10.1007/s40520-013-0023-z]
Gholizadeh N, Pirzadeh F, Mirzaii-Dizgah I, Sheykhbahaei N. Relationship between salivary vitamin D deficiency and oral lichen planus. Photodermatol Photoimmunol Photomed. 2020;36(5):384–6. https://doi.org/10.1111/phpp.12567 . [DOI: 10.1111/phpp.12567]
Higashi T, Hijikuro M, Yamagata K, Ogawa S. Overestimation of salivary 25-hydroxyvitamin D3 level when using stimulated saliva with gum-chewing. Steroids. 2013;78(9):884–7. https://doi.org/10.1016/j.steroids.2013.05.010 . [DOI: 10.1016/j.steroids.2013.05.010]
Higashi T, Homma S, Iwata H, Shimada K. Characterization of urinary metabolites of vitamin D3 in man under physiological conditions using liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2002;29(5):947–55. https://doi.org/10.1016/S0731-7085(02)00135-8 . [DOI: 10.1016/S0731-7085(02)00135-8]
Sempio C, Scheidweiler KB, Barnes AJ, Huestis MA. Optimization of recombinant β-glucuronidase hydrolysis and quantification of eight urinary cannabinoids and metabolites by liquid chromatography tandem mass spectrometry. Drug Test Anal. 2018;10(3):518–29. https://doi.org/10.1002/dta.2230 . [DOI: 10.1002/dta.2230]
Yu Y, Pan Y, Cao Y, Wu J, Lai G. Identification and structural elucidation of vitamin D3 metabolites in human urine using LC-MS-MS. Chromatographia. 2009;69(1):103–9. https://doi.org/10.1365/s10337-008-0901-2 . [DOI: 10.1365/s10337-008-0901-2]
Ogawa S, Ooki S, Shinoda K, Higashi T. Analysis of urinary vitamin D3 metabolites by liquid chromatography/tandem mass spectrometry with ESI-enhancing and stable isotope-coded derivatization. Anal Bioanal Chem. 2014;406(26):6647–54. https://doi.org/10.1007/s00216-014-8095-y . [DOI: 10.1007/s00216-014-8095-y]
Saber-Tehrani M, Aberoomand-Azar P, Raziee M. Hollow fiber-based liquid phase microextraction coupled with high-performance liquid chromatography for extraction and determination of vitamin D3 in biological fluids. J Liq Chromatogr Relat Technol. 2014;37(3):404–19. https://doi.org/10.1080/10826076.2012.745144 . [DOI: 10.1080/10826076.2012.745144]
Ghambarian M, Yamini Y, Esrafili A. Developments in hollow fiber based liquid-phase microextraction: principles and applications. Microchim Acta. 2012;177:271–94. https://doi.org/10.1007/s00604-012-0773-x . [DOI: 10.1007/s00604-012-0773-x]
Beumer JH, Parise RA, Kanterewicz B, Petkovich M, D’Argenio DZ, Hershberger PA. A local effect of CYP24 inhibition on lung tumor xenograft exposure to 1,25-dihydroxyvitamin D3 is revealed using a novel LC-MS/MS assay. Steroids. 2012;77(5):477–83. https://doi.org/10.1016/j.steroids.2012.01.007 . [DOI: 10.1016/j.steroids.2012.01.007]
Strobel N, Buddhadasa S, Adorno P, Stockham K, Greenfield H. Vitamin D and 25-hydroxyvitamin D determination in meats by LC-IT-MS. Food Chem. 2013;138(2–3):1042–7. https://doi.org/10.1016/j.foodchem.2012.08.041 . [DOI: 10.1016/j.foodchem.2012.08.041]
Jakobsen J, Clausen I, Leth T, Ovesen L. A new method for the determination of vitamin D3 and 25-hydroxyvitamin D3 in meat. J Food Compos Anal. 2004;17(6):777–87. https://doi.org/10.1016/j.jfca.2003.10.012 . [DOI: 10.1016/j.jfca.2003.10.012]
Clausen I, Jakobsen J, Leth T, Ovesen L. Vitamin D3 and 25-hydroxyvitamin D3 in raw and cooked pork cuts. J Food Compos Anal. 2003;16(5):575–85. https://doi.org/10.1016/S0889-1575(03)00064-4 . [DOI: 10.1016/S0889-1575(03)00064-4]
Lipkie TE, Janasch A, Cooper BR, Hohman EE, Weaver CM, Ferruzzi MG. Quantification of vitamin D and 25-hydroxyvitamin D in soft tissues by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2013;932:6–11. https://doi.org/10.1016/j.jchromb.2013.05.029 . [DOI: 10.1016/j.jchromb.2013.05.029]
Jeong IS, Kwak BM, Ahn JH, Leem D, Yoon T, Yoon C, et al. A Novel Sample Preparation Method Using Rapid Nonheated Saponification Method for the Determination of Cholesterol in Emulsified Foods. J Food Sci. 2012;77(10):1042–6. https://doi.org/10.1111/j.1750-3841.2012.02903.x . [DOI: 10.1111/j.1750-3841.2012.02903.x]
Petty RE, Cassidy JT. STRUCTURE AND FUNCTION. In: T., James Cassidy, Ross E. Petty, Ronald M. Laxer CBL, editor. Textbook of Pediatric Rheumatology. Elsevier; 2005. p. 9–18. https://linkinghub.elsevier.com/retrieve/pii/B9781416002468500085
Li D, Jeffery LE, Jenkinson C, Harrison SR, Chun RF, Adams JS, et al. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J Steroid Biochem Mol Biol. 2019;187:1–8. https://doi.org/10.1016/j.jsbmb.2018.10.008 . [DOI: 10.1016/j.jsbmb.2018.10.008]
Hayes ME, Denton J, Freemont AJ, Mawer EB. Synthesis of the active metabolite of vitamin D, 1,25(OH)2D3, by synovial fluid macrophages in arthritic diseases. Ann Rheum Dis. 1989 Sep 1;48(9):723 LP – 729. https://doi.org/10.1136/ard.48.9.723
Jessome LL, Volmer DA. Ion suppression: A major concern in mass spectrometry. LCGC North Am. 2006;24(5):498–510.

MeSH Term

Biomarkers
Calcifediol
Chromatography, Liquid
Humans
Specimen Handling
Tandem Mass Spectrometry
Vitamin D

Chemicals

Biomarkers
Vitamin D
Calcifediol

Word Cloud

Similar Articles

Cited By