Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats.

Pritha Bose, Amiya Priyam, Rajiv Kar, Shakti P Pattanayak
Author Information
  1. Pritha Bose: Division of Advanced Pharmacology, Department of Pharm. Sciences & Technology, Birla Institute of Technology Mesra Ranchi-835215 India.
  2. Amiya Priyam: Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar Gaya 824236 India.
  3. Rajiv Kar: Fritz Haber Centre for Molecular Dynamic Research, Hebrew University of Jerusalem Israel.
  4. Shakti P Pattanayak: Division of Advanced Pharmacology, Department of Pharm. Sciences & Technology, Birla Institute of Technology Mesra Ranchi-835215 India. ORCID

Abstract

Currently, the paucity of free drugs in conventional chemotherapy for breast-cancer curbs the desired therapeutic efficiency, often aggravating systemic toxicity. Quercetin (QRC) is a potential chemotherapeutic bio-flavonoid that is associated with poor hydrophilicity. In contrast to spherical silver nanoparticles (AgNPs), anisotropic AgNPs exhibit prominent plasmonic tunability in the near infrared (NIR) region allowing deep tissue penetration and endowing them with the ability to act as photothermal transducers as well. In this study, we optimized a simple and novel method for synthesizing folate-receptor-targeted-plasmonic silver-nanoparticles (QRC-FA-AgNPs) to serve as an efficient nanoscopic carrier system for breast cancer-cell targeted delivery of QRC and to induce photothermal therapy. A one-pot chemical synthesis method was followed for synthesizing the QRC-FA-AgNPs by finely tailoring the hydrogen bond between the reductant and stabilizer. Detailed characterization through UV-visible, near infrared (UV-vis-NIR) spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and energy-dispersive X-ray spectroscopy (EDX), along with particle-size, zeta-potential analysis, drug-loading and release capacity and stability studies were also performed. targeted cellular uptake, viability studies, chemo-photothermal efficacy, induction of apoptosis and the reactive oxygen species (ROS) generating potential were studied in the MDA-MB-231 cell-line and evaluation of the chemo-photothermal efficacy of QRC-FA-AgNPs was performed using a 7,12-dimethylbenz()anthracene (DMBA)-induced breast-carcinogenesis model in Sprague Dawley rats. Unlike conventional AgNPs, these novel pentagonal QRC-FA-AgNPs (<50 nm) manifested a robust plasmon tunability in the NIR (>800 nm) region. Detailed and studies revealed their active role in improving breast-cancer conditions by allowing controlled and targeted discharge of QRC at the tumor site, along with evoking hyperthermia under NIR laser irradiation that induced selective ablation of cancer cells. Following successful cellular internalization, the photothermal efficacy of QRC-FA-AgNPs supplemented their chemotherapeutic potency, allowing apoptosis and restraining the tumor growth. This current study highlighted the augmented efficacy of plasmonic QRC-FA-AgNPs in comparison to free quercetin, thus the development of a potential nanocarrier based on the pleiotropic function of plasmonic AgNPs may provide an efficient combined chemo-photothermal based strategy for the assassination of breast-cancer cells.

References

Biomed Pharmacother. 2018 Sep;105:27-36 [PMID: 29843042]
Chem Commun (Camb). 2019 Jul 4;55(55):8017-8020 [PMID: 31225848]
Toxicol In Vitro. 2005 Oct;19(7):975-83 [PMID: 16125895]
Nanoscale Res Lett. 2015 Dec;10(1):408 [PMID: 26474889]
Toxicol In Vitro. 2013 Feb;27(1):330-8 [PMID: 22940466]
Biomacromolecules. 2006 Feb;7(2):572-9 [PMID: 16471932]
Mol Cell Biochem. 1988 May;81(1):3-17 [PMID: 3050448]
Small. 2010 Oct 18;6(20):2272-80 [PMID: 20827680]
Biochim Biophys Acta. 2016 Oct;1860(10):2065-75 [PMID: 27392941]
Quant Imaging Med Surg. 2015 Oct;5(5):708-29 [PMID: 26682141]
Cancer Res. 1976 Sep;36(9 pt.1):3077-81 [PMID: 975075]
Biomaterials. 2010 May;31(13):3657-66 [PMID: 20138662]
Sensors (Basel). 2008 Oct 24;8(10):6660-6673 [PMID: 27873891]
Phytother Res. 2018 Nov;32(11):2109-2130 [PMID: 30039547]
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jul;9(4): [PMID: 28160445]
Medicine (Baltimore). 2015 Mar;94(11):e617 [PMID: 25789952]
Cancer Lett. 2004 Jun 25;209(2):171-6 [PMID: 15159019]
Nanoscale. 2018 Sep 13;10(35):16365-16397 [PMID: 30151537]
Nanomedicine (Lond). 2019 Feb;14(3):255-274 [PMID: 30676277]
J Photochem Photobiol B. 2009 Dec 2;97(3):138-44 [PMID: 19811928]
J Physiol Biochem. 2018 May;74(2):223-234 [PMID: 29435821]
Toxicol In Vitro. 2012 Mar;26(2):221-8 [PMID: 22222411]
Pharm Res. 2003 May;20(5):826-32 [PMID: 12751641]
Medicina (Kaunas). 2019 Apr 22;55(4): [PMID: 31013662]
J Biomed Nanotechnol. 2016 Dec;12(12):2202-19 [PMID: 29372971]
Carcinogenesis. 2003 Feb;24(2):327-34 [PMID: 12584184]
ACS Omega. 2018 Jul 31;3(7):8317-8328 [PMID: 30087941]
Clin Ther. 2003 Aug;25(8):2121-37 [PMID: 14512124]
Sci Rep. 2016 Apr 12;6:24049 [PMID: 27068577]
Biomed Pharmacother. 2016 Aug;82:439-48 [PMID: 27470383]
Molecules. 2016 Mar 25;21(4):411 [PMID: 27023506]
Toxicol Pathol. 2005;33(6):726-37 [PMID: 16263698]
Nanomedicine (Lond). 2008 Dec;3(6):761-76 [PMID: 19025451]
Angew Chem Int Ed Engl. 2010 Apr 1;49(15):2711-5 [PMID: 20235255]
J Am Chem Soc. 2006 Feb 15;128(6):2115-20 [PMID: 16464114]
Colloids Surf B Biointerfaces. 2019 Nov 1;183:110429 [PMID: 31426025]
Acta Pol Pharm. 2001 Nov-Dec;58(6):415-20 [PMID: 12197612]
Mol Med Rep. 2016 Nov;14(5):4559-4566 [PMID: 27748879]
Biomaterials. 2012 Sep;33(26):6155-61 [PMID: 22682937]
Science. 2004 Mar 19;303(5665):1818-22 [PMID: 15031496]
Adv Drug Deliv Rev. 2010 Aug 30;62(11):1064-79 [PMID: 20691229]
Mol Cancer Ther. 2017 Dec;16(12):2770-2779 [PMID: 28729398]
Altern Med Rev. 2000 Jun;5(3):196-208 [PMID: 10869101]
Adv Drug Deliv Rev. 2000 Mar 30;41(2):147-62 [PMID: 10699311]
Cell Biochem Funct. 2017 Jun;35(4):217-231 [PMID: 28498520]
Ann Oncol. 2001 Feb;12(2):245-8 [PMID: 11300332]
ACS Appl Bio Mater. 2019 Dec 16;2(12):5727-5738 [PMID: 35021566]
Am J Clin Nutr. 2000 Feb;71(2):583-9 [PMID: 10648275]
Dalton Trans. 2014 Aug 21;43(31):11826-33 [PMID: 24957728]
Pak J Biol Sci. 2013 Jul 1;16(13):601-9 [PMID: 24505982]
Drug Discov Today. 2015 May;20(5):595-601 [PMID: 25543008]
Blood. 1992 Jun 1;79(11):2807-20 [PMID: 1586732]
Nat Rev Cancer. 2005 Mar;5(3):161-71 [PMID: 15738981]
J Biomed Nanotechnol. 2012 Oct;8(5):751-9 [PMID: 22888745]
Colloids Surf B Biointerfaces. 2016 Jun 1;142:81-88 [PMID: 26938323]
Mol Pharm. 2014 Feb 3;11(2):391-9 [PMID: 24304361]
Mol Med Rep. 2012 Jun;5(6):1453-6 [PMID: 22447039]
Biomaterials. 2011 Nov;32(33):8555-61 [PMID: 21839507]
IUBMB Life. 2015 May;67(5):361-73 [PMID: 25983116]
Nanoscale. 2014 Jun 21;6(12):6745-54 [PMID: 24824564]
ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30306-30317 [PMID: 28836433]
Arch Pathol Lab Med. 2014 Jul;138(7):890-5 [PMID: 24028341]
Pharmacogn Mag. 2018 Jan;13(Suppl 4):S749-S755 [PMID: 29491628]
J Control Release. 2016 Jun 28;232:161-74 [PMID: 27090165]
Artif Cells Nanomed Biotechnol. 2017 Sep;45(6):1-10 [PMID: 27362495]
Nanotechnol Sci Appl. 2008 Sep 19;1:17-32 [PMID: 24198458]
Cancer Lett. 2011 Dec 8;311(2):131-40 [PMID: 21840122]
Clin Exp Pharmacol Physiol. 2016 Oct;43(10):939-50 [PMID: 27297262]
Clin Exp Pharmacol Physiol. 2020 Jan;47(1):143-157 [PMID: 31563143]

Word Cloud

Similar Articles

Cited By