Molecular Effects of Biogenic Zinc Nanoparticles on the Growth and Development of L. Revealed by Proteomics and Transcriptomics.

Laraib Sawati, Elenora Ferrari, York-Dieter Stierhof, Birgit Kemmerling, Zia-Ur-Rehman Mashwani
Author Information
  1. Sohail: Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan.
  2. Laraib Sawati: Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan.
  3. Elenora Ferrari: Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
  4. York-Dieter Stierhof: Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
  5. Birgit Kemmerling: Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
  6. Zia-Ur-Rehman Mashwani: Department of Botany, Pir Mehr Ali Shah (PMAS)-Arid Agriculture University, Rawalpindi, Pakistan.

Abstract

Plants are indispensable on earth and their improvement in terms of food security is a need of time. The current study has been designed to investigate how biogenic zinc nanoparticles (Zn NPs) can improve the growth and development of L. In this study, Zn NPs were synthesized utilizing aqueous extracts, and their morphological and optical properties were assessed using UV-Visible spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized Zn NPs were irregular in shape, indicating aggregation in pattern, with an average particle size of 30 nm, while XRD analysis revealed the crystalline structure of nanoparticles. The growth and development of varieties (Faisal canola and Shiralee) were assessed after foliar treatments with different concentrations of biogenic Zn NPs. In varieties, exposure to 15 mg/L Zn NPs dramatically increased chlorophyll, carotenoid content, and biomass accumulation. Similarly, proteomic analyses, on the other hand, revealed that proteins associated with photosynthesis, transport, glycolysis, and stress response in both varieties were substantially altered. Such exposure to Zn NPs, differential expression of genes associated with photosynthesis, ribosome structural constituents, and oxidative stress response were considerably upregulated in var. (Faisal and Shiralee canola). The results of this study revealed that foliar applications of biogenic Zn NPs influence the transcriptome and protein profiling positively, therefore stimulating plant growth and development.

Keywords

References

Nat Methods. 2007 Mar;4(3):207-14 [PMID: 17327847]
PLoS One. 2020 Nov 10;15(11):e0241568 [PMID: 33170873]
Plant Physiol Biochem. 2021 Sep;166:376-392 [PMID: 34153882]
Science. 2002 Aug 9;297(5583):1016-8 [PMID: 12114528]
Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
Int J Nanomedicine. 2020 May 21;15:3621-3637 [PMID: 32547018]
Sci Rep. 2020 May 22;10(1):8531 [PMID: 32444606]
Nat Protoc. 2007;2(8):1896-906 [PMID: 17703201]
Environ Pollut. 2013 Mar;174:150-6 [PMID: 23262070]
J Hazard Mater. 2012 Nov 30;241-242:55-62 [PMID: 23036700]
J Biotechnol. 2020 Nov 10;323:254-263 [PMID: 32905797]
Chem Rev. 2005 Apr;105(4):1103-69 [PMID: 15826011]
Amino Acids. 2012 Dec;43(6):2393-416 [PMID: 22588482]
Microsc Res Tech. 2020 Nov;83(11):1299-1307 [PMID: 32885515]
J Proteomics. 2016 Jun 30;143:136-150 [PMID: 27079982]
J Environ Sci (China). 2015 Aug 1;34:248-55 [PMID: 26257367]
Genome Res. 2010 Jun;20(6):837-46 [PMID: 20237107]
Plant Physiol Biochem. 2021 Apr;161:122-130 [PMID: 33581620]
Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
Environ Sci Technol. 2009 Dec 15;43(24):9473-9 [PMID: 19924897]
J Hazard Mater. 2018 May 5;349:101-110 [PMID: 29414741]
Metallomics. 2015 Dec;7(12):1584-94 [PMID: 26463441]
Plants (Basel). 2020 Jun 30;9(7): [PMID: 32630094]
IET Nanobiotechnol. 2019 Feb;13(1):46-51 [PMID: 30964037]
Electrophoresis. 2020 Aug;41(15):1374-1378 [PMID: 32548848]
J Proteome Res. 2011 Apr 1;10(4):1794-805 [PMID: 21254760]
J Exp Bot. 2013 Jan;64(1):369-81 [PMID: 23264639]
Plant Cell Environ. 2020 Jul;43(7):1637-1654 [PMID: 32167577]
J Am Acad Dermatol. 2009 Oct;61(4):685-92 [PMID: 19646780]
New Phytol. 2000 May;146(2):185-205 [PMID: 33862977]
Xenobiotica. 2017 Jul;47(7):632-643 [PMID: 27414072]
Environ Toxicol Chem. 2008 Sep;27(9):1825-51 [PMID: 19086204]
Nat Protoc. 2016 Dec;11(12):2301-2319 [PMID: 27809316]
J Mass Spectrom. 2009 Jun;44(6):861-78 [PMID: 19504542]
Trends Plant Sci. 2011 Jul;16(7):395-404 [PMID: 21489854]
Front Plant Sci. 2016 Apr 20;7:535 [PMID: 27148347]
Saudi J Biol Sci. 2016 Jul;23(4):517-23 [PMID: 27298586]
Plants (Basel). 2021 Aug 30;10(9): [PMID: 34579340]
Plant Physiol. 1999 Nov;121(3):829-838 [PMID: 10557231]
J Proteomics. 2015 Jun 03;122:100-18 [PMID: 25857275]
J Agric Food Chem. 2021 Sep 15;69(36):10450-10468 [PMID: 34473500]
IET Nanobiotechnol. 2018 Oct;12(7):927-932 [PMID: 30247132]
Biochim Biophys Acta Proteins Proteom. 2017 Jan;1865(1):28-42 [PMID: 27717896]
Plant Physiol. 1949 Jan;24(1):1-15 [PMID: 16654194]

Word Cloud

Similar Articles

Cited By