Plant immunity is antagonized by pathogenic effectors during interactions with bacteria, viruses or oomycetes. These effectors target core plant processes to promote infection. One such core plant process is autophagy, a conserved proteolytic pathway involved in ensuring cellular homeostasis. It involves the formation of autophagosomes around proteins destined for autophagic degradation. Many cellular components from organelles, aggregates, inactive or misfolded proteins have been found to be degraded via autophagy. Increasing evidence points to a high degree of specificity during the targeting of these components, strengthening the idea of selective autophagy. Selective autophagy receptors bridge the gap between target proteins and the forming autophagosome. To achieve this, the receptors are able to recognize specifically their target proteins in a ubiquitin-dependent or -independent manner, and to bind to ATG8 via canonical or non-canonical ATG8-interacting motifs. Some receptors have also been shown to require oligomerization to achieve their function in autophagic degradation. We summarize the recent advances in the role of selective autophagy in plant immunity and highlight NBR1 as a key player. However, not many selective autophagy receptors, especially those functioning in immunity, have been characterized in plants. We propose an in silico approach to identify novel receptors, by screening the Arabidopsis proteome for proteins containing features theoretically needed for a selective autophagy receptor. To corroborate these data, the transcript levels of these proteins during immune response are also investigated using public databases. We further highlight the novel perspectives and applications introduced by immunity-related selective autophagy studies, demonstrating its importance in research.
Nat Commun. 2021 Sep 1;12(1):5212
[PMID:
34471133]
Trends Microbiol. 2020 Jul;28(7):523-535
[PMID:
32544439]
Front Plant Sci. 2014 Jan 31;5:13
[PMID:
24550923]
Mol Cell. 2015 Jun 18;58(6):1053-66
[PMID:
26004230]
Annu Rev Physiol. 1966;28:435-92
[PMID:
5322983]
Annu Rev Plant Biol. 2018 Apr 29;69:173-208
[PMID:
29539270]
Plant Physiol. 2018 Jan;176(1):649-662
[PMID:
29133371]
J Cell Sci. 2013 Aug 1;126(Pt 15):3237-47
[PMID:
23908376]
Annu Rev Genet. 2009;43:67-93
[PMID:
19653858]
New Phytol. 2021 Jan;229(2):1036-1051
[PMID:
32898938]
PLoS Biol. 2019 Jul 22;17(7):e3000373
[PMID:
31329577]
Front Cell Dev Biol. 2018 Sep 13;6:118
[PMID:
30271774]
J Mol Biol. 2020 Jan 3;432(1):3-27
[PMID:
31082435]
Cells. 2021 Aug 05;10(8):
[PMID:
34440758]
EMBO J. 2022 Jul 4;41(13):e110352
[PMID:
35620914]
Cell. 2019 Apr 18;177(3):766-781.e24
[PMID:
30955882]
Plant Cell. 2018 Mar;30(3):668-685
[PMID:
29500318]
J Biol Chem. 2010 Aug 13;285(33):25554-69
[PMID:
20516081]
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E2026-E2035
[PMID:
28223514]
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10113-8
[PMID:
22665793]
Curr Opin Immunol. 2012 Feb;24(1):21-31
[PMID:
22118953]
Annu Rev Biochem. 2012;81:203-29
[PMID:
22524316]
Nat Commun. 2019 May 3;10(1):2055
[PMID:
31053714]
Annu Rev Virol. 2020 Sep 29;7(1):403-419
[PMID:
32530794]
Autophagy. 2016 Oct 2;12(10):1945-1953
[PMID:
27484196]
Int J Mol Sci. 2021 Jan 20;22(3):
[PMID:
33498336]
Autophagy. 2011 Sep;7(9):993-1010
[PMID:
21606687]
Annu Rev Phytopathol. 2010;48:69-91
[PMID:
20337516]
Nat Cell Biol. 2018 Mar;20(3):233-242
[PMID:
29476151]
Trends Cell Biol. 2016 Jan;26(1):6-16
[PMID:
26437584]
Autophagy. 2011 Oct;7(10):1145-58
[PMID:
21670587]
Trends Biochem Sci. 2017 Nov;42(11):873-886
[PMID:
28947091]
Plant Cell. 2021 Apr 17;33(2):404-419
[PMID:
33630076]
Sci STKE. 2007 Aug 28;2007(401):re6
[PMID:
17726178]
Plant Cell. 2022 Apr 26;34(5):1447-1478
[PMID:
35167697]
Autophagy. 2016 May 3;12(5):876-87
[PMID:
27071037]
Mol Plant Pathol. 2019 Sep;20(9):1211-1216
[PMID:
31397085]
Autophagy. 2021 Nov;17(11):3375-3388
[PMID:
33487099]
Cold Spring Harb Symp Quant Biol. 2012;77:235-47
[PMID:
23223409]
Mol Plant. 2019 Jan 7;12(1):113-123
[PMID:
30508598]
New Phytol. 2013 Aug;199(3):683-94
[PMID:
23647084]
Mol Plant. 2020 Sep 7;13(9):1231-1233
[PMID:
32768600]
J Mol Biol. 2020 Jan 3;432(1):63-79
[PMID:
31260688]
Nat Cell Biol. 2017 Jun;19(6):732-739
[PMID:
28504708]
Nat Rev Mol Cell Biol. 2021 Mar;22(3):196-213
[PMID:
33510441]
New Phytol. 2020 Feb;225(4):1746-1761
[PMID:
31621924]
Curr Biol. 2021 May 10;31(9):1931-1944.e4
[PMID:
33711250]
Nat Rev Genet. 2010 Aug;11(8):539-48
[PMID:
20585331]
Plant J. 2011 Jun;66(5):818-30
[PMID:
21332848]
Autophagy. 2018;14(8):1465-1466
[PMID:
30033807]
Nature. 2011 Jan 20;469(7330):323-35
[PMID:
21248839]
J Integr Plant Biol. 2020 Feb;62(2):181-200
[PMID:
31483571]
Dev Cell. 2017 Apr 10;41(1):33-46.e7
[PMID:
28399398]
Annu Rev Cell Dev Biol. 2018 Oct 6;34:137-162
[PMID:
30110556]
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22872-22883
[PMID:
31628252]
Front Plant Sci. 2021 Nov 29;12:783881
[PMID:
34912364]
J Mol Biol. 2016 May 8;428(9 Pt A):1714-24
[PMID:
26876603]
Curr Opin Cell Biol. 2021 Apr;69:23-29
[PMID:
33445149]
Nature. 2006 Nov 16;444(7117):323-9
[PMID:
17108957]
Biochem J. 2006 Nov 1;399(3):361-72
[PMID:
17034365]
Cell Host Microbe. 2020 Oct 7;28(4):558-571.e6
[PMID:
32810441]
Elife. 2015 Sep 28;4:e08941
[PMID:
26413874]
Mol Cell. 2019 Oct 17;76(2):268-285
[PMID:
31585693]
Annu Rev Cell Dev Biol. 2021 Oct 6;37:143-169
[PMID:
34152791]
Nature. 2016 Sep 14;537(7620):328-38
[PMID:
27629639]
Nat Cell Biol. 2010 Aug;12(8):781-90
[PMID:
20639871]
Dev Cell. 2021 Apr 5;56(7):949-966
[PMID:
33765438]
FEBS Lett. 2010 Apr 2;584(7):1379-85
[PMID:
20083108]
Front Plant Sci. 2017 Jul 11;8:1204
[PMID:
28744293]
Nat Commun. 2018 Mar 28;9(1):1268
[PMID:
29593293]
Curr Opin Plant Biol. 2018 Dec;46:113-121
[PMID:
30267997]
Nat Rev Mol Cell Biol. 2013 Dec;14(12):759-74
[PMID:
24201109]