Long-Qing Zhang, Shao-Jie Gao, Jia Sun, Dan-Yang Li, Jia-Yi Wu, Fan-He Song, Dai-Qiang Liu, Ya-Qun Zhou, Wei Mei
BACKGROUND: Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Microglial activation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. However, the mechanisms underlying spinal microglial activation during neuropathic pain remain incompletely understood. Here, we investigated the role of Dickkopf (DKK) 3 and its interplay with microglial activation in the spinal cord in neuropathic pain.
METHODS: In this study, we investigated the effects of intrathecal injection of recombinant DKK3 (rDKK3) on mechanical allodynia and microglial activation in the spinal cord after spared nerve injury (SNI) in rats by western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA).
RESULTS: We found that SNI induced a significant decrease in the levels of DKK3, Kremen-1 and Dishevelled-1 (DVL-1) and up-regulated the expression of phosphorylated apoptosis signal-regulating kinase 1 (p-ASK1), phosphorylated c-JUN N-terminal kinase (p-JNK), phosphorylated p38 (p-p38) in the spinal cord. Moreover, our results showed that exogenous intrathecal administration of rDKK3 inhibited expression of p-ASK1, p-JNK, p-p38, promoted the transformation of microglia from M1 type to M2 type, and decreased the production of pro-inflammatory cytokines compared to the rats of SNI + Vehicle. However, these effects were reversed by intrathecal administration of Kremen-1 siRNA or Dishevelled-1 (DVL-1) siRNA.
CONCLUSIONS: These results suggest that DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation, at least partly, by the Kremen-1 and DVL-1 pathways.
J Hepatol. 2016 Jul;65(1):113-124
[PMID:
27016281]
Eur J Pharmacol. 2009 Nov 25;623(1-3):65-72
[PMID:
19766105]
J Nanobiotechnology. 2021 Sep 8;19(1):274
[PMID:
34496892]
Brain Res. 2015 Mar 2;1599:20-31
[PMID:
25541364]
Nat Med. 2010 Nov;16(11):1258-66
[PMID:
20948531]
Pharmacol Res. 2019 Sep;147:104339
[PMID:
31276771]
J Neurosci. 2015 Sep 30;35(39):13385-401
[PMID:
26424886]
Nat Rev Dis Primers. 2017 Feb 16;3:17002
[PMID:
28205574]
Neuroscience. 2017 May 4;349:76-86
[PMID:
28254586]
Pain. 2002 Sep;99(1-2):175-84
[PMID:
12237195]
J Neurochem. 2016 Jan;136 Suppl 1:10-7
[PMID:
25693054]
Neurobiol Learn Mem. 2021 Jul;182:107463
[PMID:
34015440]
J Neuroinflammation. 2018 Jun 7;15(1):176
[PMID:
29879988]
J Neuroinflammation. 2019 Apr 11;16(1):83
[PMID:
30975172]
Nat Rev Neurosci. 2018 Mar;19(3):138-152
[PMID:
29416128]
Biochim Biophys Acta. 2012 Jan;1825(1):18-28
[PMID:
21982838]
J Neuroimmune Pharmacol. 2021 Nov 2;:
[PMID:
34727296]
J Pain. 2017 Aug;18(8):933-946
[PMID:
28323246]
Cell Death Discov. 2019 May 1;5:91
[PMID:
31069116]
Growth Factors. 2010 Aug;28(4):232-42
[PMID:
20370576]
Basic Res Cardiol. 2015 May;110(3):25
[PMID:
25840773]
Neuron. 2018 Dec 19;100(6):1292-1311
[PMID:
30571942]
J Neurosci. 2006 Mar 29;26(13):3551-60
[PMID:
16571763]
Neuron. 2006 Oct 5;52(1):77-92
[PMID:
17015228]
J Neurosci. 2003 May 15;23(10):4017-22
[PMID:
12764087]
Circulation. 2017 Sep 12;136(11):1022-1036
[PMID:
28674110]
Nat Rev Immunol. 2014 Apr;14(4):217-31
[PMID:
24577438]
Anesthesiology. 2018 Aug;129(2):343-366
[PMID:
29462012]
Pain. 2000 Aug;87(2):149-158
[PMID:
10924808]
Cell. 2009 Oct 16;139(2):267-84
[PMID:
19837031]
Cell Biosci. 2020 Mar 23;10:45
[PMID:
32211150]
J Neuroinflammation. 2020 Mar 14;17(1):83
[PMID:
32171293]
Brain Behav Immun. 2018 Aug;72:34-44
[PMID:
29128611]
Nat Genet. 2011 Dec 25;44(2):165-9
[PMID:
22197930]
J Neuroinflammation. 2021 Jan 5;18(1):2
[PMID:
33402181]
Nat Commun. 2019 Jan 10;10(1):130
[PMID:
30631061]
J Cell Biochem. 2010 Oct 15;111(3):564-73
[PMID:
20568119]
Pain. 2020 Mar;161(3):532-544
[PMID:
31738230]
Biochem Biophys Res Commun. 2017 Apr 8;485(3):584-590
[PMID:
27932247]
Biol Res. 2018 Sep 4;51(1):31
[PMID:
30180910]
ACS Chem Neurosci. 2021 Mar 17;12(6):966-978
[PMID:
33666084]
Pain. 2019 Jan;160(1):136-150
[PMID:
30157131]
Exp Neurol. 2012 Apr;234(2):271-82
[PMID:
21893056]
Mol Cell Biochem. 2008 Feb;309(1-2):49-60
[PMID:
18008145]
J Mol Histol. 2013 Apr;44(2):125-34
[PMID:
23196718]
Pain. 2005 Mar;114(1-2):149-59
[PMID:
15733640]
Biochem Biophys Res Commun. 2019 Jun 25;514(2):558-564
[PMID:
31060780]
Nat Rev Neurosci. 2009 Jan;10(1):23-36
[PMID:
19096368]
Pain. 2020 Aug;161(8):1824-1836
[PMID:
32701842]
Neuropharmacology. 2016 Sep;108:207-19
[PMID:
27117708]
Pain. 2013 Dec;154 Suppl 1:S10-S28
[PMID:
23792284]
Lab Invest. 2016 Feb;96(2):239-48
[PMID:
26641069]
Br J Pharmacol. 2019 May;176(9):1341-1356
[PMID:
30811584]
Nat Neurosci. 2016 Jan;19(1):94-101
[PMID:
26642091]
Genes Cells. 2017 Apr;22(4):406-417
[PMID:
28299863]
J Neuroinflammation. 2020 Mar 20;17(1):90
[PMID:
32192500]
Arch Biochem Biophys. 2020 May 30;685:108330
[PMID:
32156533]
Nat Rev Drug Discov. 2014 Jul;13(7):533-48
[PMID:
24948120]
J Neuroinflammation. 2020 Apr 24;17(1):130
[PMID:
32331523]
Neurochem Int. 2004 Jul-Aug;45(2-3):397-407
[PMID:
15145554]
Mol Med Rep. 2018 May;17(5):7249-7257
[PMID:
29568962]
Glia. 2004 Jan 1;45(1):89-95
[PMID:
14648549]