A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications.

Luis Fernando Ornelas-Hernández, Angeles Garduno-Robles, Abraham Zepeda-Moreno
Author Information
  1. Luis Fernando Ornelas-Hernández: Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
  2. Angeles Garduno-Robles: Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
  3. Abraham Zepeda-Moreno: Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México. abraham.zepeda@mxaib.com. ORCID

Abstract

Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.

Keywords

References

Toyokazu Y (2018) Basic properties and measuring methods of nanoparticles. In: Naito M, Yokoyama T, Hosokawa K, Nogi K (eds) Nanoparticle technology handbook, 3rd edn. Elsevier, Amsterdam, pp 3–47
Balati A, Matta A, Nash K, Shipley HJ (2020) Heterojunction of vertically aligned MoS2 layers to hydrogenated black TiO2 and rutile based inorganic hollow microspheres for the highly enhanced visible light arsenic photooxidation. Compos B Eng 185:107785 [DOI: 10.1016/j.compositesb.2020.107785]
Balati A, Wagle D, Nash KL, Shipley HJ (2018) Heterojunction of TiO2 nanoparticle embedded into ZSM5 to 2D and 3D layered-structures of MoS2 nanosheets fabricated by pulsed laser ablation and microwave technique in deionized water: structurally enhanced photocatalytic performance. Appl Nanosci 9:19–32 [DOI: 10.1007/s13204-018-0902-x]
Balati A, Bazilio A, Shahriar A, Nash K, Shipley HJ (2019) Simultaneous formation of ultra-thin MoSe2 nanosheets, inorganic fullerene-like MoSe2 and MoO3 quantum dots using fast and ecofriendly pulsed laser ablation in liquid followed by microwave treatment. Mater Sci Semicond Process 99:68–77 [DOI: 10.1016/j.mssp.2019.04.017]
Polavarapu L, Mourdikoudis S, Pastoriza-Santos I, Pérez-Juste J (2015) Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm 17:3727–3762 [DOI: 10.1039/C5CE00112A]
Peddis D, Muscas G, Mathieu R, Kumar PA, Varvaro G, Singh G, Orue I, Gil-Carton D, Marcano L, Muela A, Fdez-Gubieda ML (2016) Studying nanoparticles’ 3D shape by aspect maps: determination of the morphology of bacterial magnetic nanoparticles. Faraday Discuss 191:177–188 [DOI: 10.1039/C6FD00059B]
Versaci D, Costanzo A, Ronchetti SM, Onida B, Amici J, Francia C, Bodoardo S (2021) Ultrasmall SnO2 directly grown on commercial C45 carbon as lithium-ion battery anodes for long cycling performance. Electrochim Acta 367:137489 [DOI: 10.1016/j.electacta.2020.137489]
Balati A, Tek S, Nash K, Shipley H (2019) Nanoarchitecture of TiO2 microspheres with expanded lattice interlayers and its heterojunction to the laser modified black TiO2 using pulsed laser ablation in liquid with improved photocatalytic performance under visible light irradiation. J Colloid Interface Sci 541:234–248 [DOI: 10.1016/j.jcis.2019.01.082]
Abouelela MM, Kawamura G, Matsuda A (2021) A review on plasmonic nanoparticle-semiconductor photocatalysts for water splitting. J Clean Prod 294:126200 [DOI: 10.1016/j.jclepro.2021.126200]
Boken J, Khurana P, Thatai S, Kumar D, Prasad S (2017) Plasmonic nanoparticles and their analytical applications: a review. Appl Spectrosc Rev 52:774–820 [DOI: 10.1080/05704928.2017.1312427]
Hu J, Ortgies DH, Rodríguez EM, Rivero F, Torres RA, Alfonso F, Fernández N, Carreño-Tarragona G, Monge L, Sanz-Rodriguez F, Iglesias MDC, Granado M, García-Villalon AL, Solé JG, Jaque D (2018) Optical nanoparticles for cardiovascular imaging. Adv Opt Mater 6:1800626 [DOI: 10.1002/adom.201800626]
Alonso J, Barandiarán JM, Fernández Barquín L, García-Arribas A (2018) Magnetic nanoparticles, synthesis, properties, and applications. In: Magnetic Nanostructured Materials pp 1–40
Ng SM, Koneswaran M, Narayanaswamy R (2016) A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv 6:21624–21661 [DOI: 10.1039/C5RA24987B]
Kang H, Hu S, Cho MH, Hong SH, Choi Y, Choi HS (2018) Theranostic nanosystems for targeted cancer therapy. Nano Today 23:59–72 [DOI: 10.1016/j.nantod.2018.11.001]
Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737 [DOI: 10.1021/ja040082h]
Goryacheva IY, Sapelkin AV, Sukhorukov GB (2017) Carbon nanodots: mechanisms of photoluminescence and principles of application. TrAC Trends Anal Chem 90:27–37 [DOI: 10.1016/j.trac.2017.02.012]
Barman MK, Patra A (2018) Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. J Photochem Photobiol C Photochem Rev 37:1–22 [DOI: 10.1016/j.jphotochemrev.2018.08.001]
Xiong Y, Schneider J, Ushakova EV, Rogach AL (2018) Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today 23:124–139 [DOI: 10.1016/j.nantod.2018.10.010]
Liu Q, Ma C, Liu XP, Wei YP, Mao CJ, Zhu JJ (2017) A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers. Biosens Bioelectron 92:273–279 [DOI: 10.1016/j.bios.2017.02.027]
Nguyen V, Si J, Yan L, Hou X (2016) Direct demonstration of photoluminescence originated from surface functional groups in carbon nanodots. Carbon 108:268–273 [DOI: 10.1016/j.carbon.2016.07.019]
Li X, Zhang S, Kulinich SA, Liu Y, Zeng H (2014) Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 4:4976 [DOI: 10.1038/srep04976]
Farshbaf M, Davaran S, Rahimi F, Annabi N, Salehi R, Akbarzadeh A (2018) Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artificial cells, nanomedicine, and biotechnology 46:1331–1348 [DOI: 10.1080/21691401.2017.1377725]
Huang YF, Zhou X, Zhou R, Zhang H, Kang KB, Zhao M, Peng Y, Wang Q, Zhang HL, Qiu WY (2014) One-pot synthesis of highly luminescent carbon quantum dots and their nontoxic ingestion by zebrafish for in vivo imaging. Chemistry 20:5640–5648 [DOI: 10.1002/chem.201400011]
Kwon W, Do S, Rhee S-W (2012) Formation of highly luminescent nearly monodisperse carbon quantum dots via emulsion-templated carbonization of carbohydrates. RSC Adv 2:11223 [DOI: 10.1039/c2ra22186a]
Schwenke AM, Hoeppener S, Schubert US (2015) Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 27:4113–4141 [DOI: 10.1002/adma.201500472]
Reyes D, Camacho M, Mayorga M, Weathers D, Salamo G, Wang Z, Neogi A (2016) Laser Ablated Carbon Nanodots for Light Emission. Nanoscale Res Lett 11:424 [DOI: 10.1186/s11671-016-1638-8]
Kurdyukov DA, Eurov DA, Rabchinskii MK, Shvidchenko AV, Baidakova MV, Kirilenko DA, Koniakhin SV, Shnitov VV, Sokolov VV, Brunkov PN, Dideikin AT, Sgibnev YM, Mironov LY, Smirnov DA, Vul AY, Golubev VG (2018) Controllable spherical aggregation of monodisperse carbon nanodots. Nanoscale 10:13223–13235 [DOI: 10.1039/C8NR01900B]
Chandra S, Patra P, Pathan SH, Roy S, Mitra S, Layek A, Bhar R, Pramanik P, Goswami A (2013) Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J Mater Chem B 1:2375 [DOI: 10.1039/c3tb00583f]
Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27:4169–4177 [DOI: 10.1002/adma.201500323]
Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed Engl 54:5360–5363 [DOI: 10.1002/anie.201501193]
Liu Z, Zou H, Wang N, Yang T, Peng Z, Wang J, Li N, Huang C (2018) Photoluminescence of carbon quantum dots: coarsely adjusted by quantum confinement effects and finely by surface trap states. Sci China Chem 61:490–496 [DOI: 10.1007/s11426-017-9172-0]
Zhang S, Zhang L, Huang L, Zheng G, Zhang P, Jin Y, Jiao Z, Sun X (2019) Study on the fluorescence properties of carbon dots prepared via combustion process. J Lumin 206:608–612 [DOI: 10.1016/j.jlumin.2018.10.086]
Loo AH, Sofer Z, Bousa D, Ulbrich P, Bonanni A, Pumera M (2016) Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl Mater Interfaces 8:1951–1957 [DOI: 10.1021/acsami.5b10160]
Xu H, Yang X, Li G, Zhao C, Liao X (2015) Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63:6707–6714 [DOI: 10.1021/acs.jafc.5b02319]
Park SY, Lee HU, Park ES, Lee SC, Lee JW, Jeong SW, Kim CH, Lee YC, Huh YS, Lee J (2014) Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces 6:3365–3370 [DOI: 10.1021/am500159p]
Chandra S, Mahto TK, Chowdhuri AR, Das B, Sahu SK (2017) One step synthesis of functionalized carbon dots for the ultrasensitive detection of Escherichia coli and iron (III). Sens Actuators B Chem 245:835–844 [DOI: 10.1016/j.snb.2017.02.017]
Jin H, Gui R, Wang Y, Sun J (2017) Carrot-derived carbon dots modified with polyethyleneimine and nile blue for ratiometric two-photon fluorescence turn-on sensing of sulfide anion in biological fluids. Talanta 169:141–148 [DOI: 10.1016/j.talanta.2017.03.083]
Prasannan A, Imae T (2013) One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 52:15673–15678 [DOI: 10.1021/ie402421s]
Siddique AB, Pramanick AK, Chatterjee S, Ray M (2018) Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol. Sci Rep 8:9770 [DOI: 10.1038/s41598-018-28021-9]
Arumugam N, Kim J (2018) Synthesis of carbon quantum dots from Broccoli and their ability to detect silver ions. Mater Lett 219:37–40 [DOI: 10.1016/j.matlet.2018.02.043]
Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed Engl 52:3953–3957 [DOI: 10.1002/anie.201300519]
Gao P, Xie Z, Zheng M (2021) Small nanoparticles bring big prospect: the synthesis, modification, photoluminescence and sensing applications of carbon dots. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2021.09.085 [DOI: 10.1016/j.cclet.2021.09.085]
Su W, Wu H, Xu H, Zhang Y, Li Y, Li X, Fan L (2020) Carbon dots: a booming material for biomedical applications. Mater Chem Front 4:821–836 [DOI: 10.1039/C9QM00658C]
Azam N, Ali MN, Khan TJ (2021) Carbon quantum dots for biomedical applications: review and analysis. Front Mater 8:272 [DOI: 10.3389/fmats.2021.700403]
Chung YJ, Kim J, Park CB (2020) Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano 14:6470–6497 [DOI: 10.1021/acsnano.0c02114]
Ghosal K, Ghosh A (2019) Carbon dots: the next generation platform for biomedical applications. Mater Sci Eng C, Mater Biol Appl 96:887–903 [DOI: 10.1016/j.msec.2018.11.060]
Kwon W, Do S, Kim JH, Seok Jeong M, Rhee SW (2015) Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines. Sci Rep 5:12604 [DOI: 10.1038/srep12604]
Mao QX, E S, Xia JM, Song RS, Shu Y, Chen XW, Wang JH (2016) Hydrophobic carbon nanodots with rapid cell penetrability and tunable photoluminescence behavior for in vitro and in vivo imaging. Langmuir 32:12221–12229 [DOI: 10.1021/acs.langmuir.6b03331]
Luo PG, Yang F, Yang S-T, Sonkar SK, Yang L, Broglie JJ, Liu Y, Sun Y-P (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 4:10791 [DOI: 10.1039/c3ra47683a]
Yang Y, Liu N, Qiao S, Liu R, Huang H, Liu Y (2015) Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane. New J Chem 39:2815–2821 [DOI: 10.1039/C4NJ02256D]
Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, Chen Q, Li H, Tang H, Zhang Y, Yao S (2013) Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138:6551–6557 [DOI: 10.1039/c3an01003a]
Jia Q, Zhao Z, Liang K, Nan F, Li Y, Wang J, Ge J, Wang P (2020) Recent advances and prospects of carbon dots in cancer nanotheranostics. Mater Chem Front 4:449–471 [DOI: 10.1039/C9QM00667B]
Ray P, Moitra P, Pan D (2021) Emerging theranostic applications of carbon dots and its variants. View 3:20200089 [DOI: 10.1002/VIW.20200089]
Kong B, Yang T, Cheng F, Qian Y, Li C, Zhan L, Li Y, Zou H, Huang C (2022) Carbon dots as nanocatalytic medicine for anti-inflammation therapy. J Colloid Interface Sci 611:545–553 [DOI: 10.1016/j.jcis.2021.12.107]
Yang X, Wang Y, Shen X, Su C, Yang J, Piao M, Jia F, Gao G, Zhang L, Lin Q (2017) One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci 492:1–7 [DOI: 10.1016/j.jcis.2016.12.057]
Mohammadi S, Salimi A, Hoseinkhani Z, Ghasemi F, Mansouri K (2022) Carbon dots hybrid for dual fluorescent detection of microRNA-21 integrated bioimaging of MCF-7 using a microfluidic platform. J Nanobiotechnology 20:73 [DOI: 10.1186/s12951-022-01274-3]
Mohammadi R, Naderi-Manesh H, Farzin L, Vaezi Z, Ayarri N, Samandari L, Shamsipur M (2022) Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: a review. J Pharm Biomed Anal 212:114628 [DOI: 10.1016/j.jpba.2022.114628]
Naik GG, Alam MB, Pandey V, Dubey PK, Parmar AS, Sahu AN (2020) Pink fluorescent carbon dots derived from the phytomedicine for breast cancer cell imaging. ChemistrySelect 5:6954–6960 [DOI: 10.1002/slct.202001613]
Shi Y, Xu H, Yuan T, Meng T, Wu H, Chang J, Wang H, Song X, Li Y, Li X, Zhang Y, Xie W, Fan L (2021) Carbon dots: an innovative luminescent nanomaterial. Aggregate. https://doi.org/10.1002/agt2.108,e108 [DOI: 10.1002/agt2.108,e108]
Yang X, Li X, Wang B, Ai L, Li G, Yang B, Lu S (2022) Advances, opportunities, and challenge for full-color emissive carbon dots. Chin Chem Lett 33:613–625 [DOI: 10.1016/j.cclet.2021.08.077]
Hallaji Z, Bagheri Z, Kalji S-O, Ermis E, Ranjbar B (2021) Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine applications: a review. FlatChem 29:100271 [DOI: 10.1016/j.flatc.2021.100271]
Ding H, Zhou X-X, Wei J-S, Li X-B, Qin B-T, Chen X-B, Xiong H-M (2020) Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon 167:322–344 [DOI: 10.1016/j.carbon.2020.06.024]
Boruah JS, Sankaranarayanan K, Chowdhury D (2022) Insight into carbon quantum dot–vesicles interactions: role of functional groups. RSC Adv 12:4382–4394 [DOI: 10.1039/D1RA08809B]
Wareing TC, Gentile P, Phan AN (2021) Biomass-based carbon dots: current development and future perspectives. ACS Nano 15:15471–15501 [DOI: 10.1021/acsnano.1c03886]
Zhu Z, Cheng R, Ling L, Li Q, Chen S (2020) Rapid and large-scale production of multi-fluorescence carbon dots by a magnetic hyperthermia method. Angew Chem Int Ed Engl 59:3099–3105 [DOI: 10.1002/anie.201914331]
Shaik SA, Sengupta S, Varma RS, Gawande MB, Goswami A (2020) Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: a timely update. ACS Sustain Chem Eng 9:3–49 [DOI: 10.1021/acssuschemeng.0c04727]
Zhou Y, Mintz KJ, Sharma SK, Leblanc RM (2019) Carbon dots: diverse preparation, application, and perspective in surface chemistry. Langmuir 35:9115–9132 [DOI: 10.1021/acs.langmuir.9b00595]
Arcudi F, Dordevic L, Prato M (2019) Design, synthesis, and functionalization strategies of tailored carbon nanodots. Acc Chem Res 52:2070–2079 [DOI: 10.1021/acs.accounts.9b00249]
Alaghmandfard A, Sedighi O, Rezaei NT, Abedini AA, Khachatourian AM, Toprak MS, Seifalian A (2021) Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater Sci Eng C Mater Biol Appl 120:111756. https://doi.org/10.1016/j.msec.2020.111756 [DOI: 10.1016/j.msec.2020.111756]
Anwar S, Ding H, Xu M, Hu X, Li Z, Wang J, Liu L, Jiang L, Wang D, Dong C, Yan M, Wang Q, Bi H (2019) Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl Bio Mater 2:2317–2338 [DOI: 10.1021/acsabm.9b00112]
Li S, Li L, Tu H, Zhang H, Silvester DS, Banks CE, Zou G, Hou H, Ji X (2021) The development of carbon dots: from the perspective of materials chemistry. Mater Today 51:188–207 [DOI: 10.1016/j.mattod.2021.07.028]
Godavarthi S, Mohan Kumar K, Vazquez Velez E, Hernandez-Eligio A, Mahendhiran M, Hernandez-Como N, Aleman M, Martinez Gomez L (2017) Nitrogen doped carbon dots derived from Sargassum fluitans as fluorophore for DNA detection. J Photochem Photobiol B 172:36–41 [DOI: 10.1016/j.jphotobiol.2017.05.014]
Khan S, Verma NC, Chethana, Nandi CK (2018) Carbon dots for single-molecule imaging of the nucleolus. ACS Appl Nano Mater 1:483–487 [DOI: 10.1021/acsanm.7b00175]
Shangguan J, He D, He X, Wang K, Xu F, Liu J, Tang J, Yang X, Huang J (2016) Label-Free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal Chem 88:7837–7843 [DOI: 10.1021/acs.analchem.6b01932]
Motaghi H, Mehrgardi MA, Bouvet P (2017) Carbon dots-AS1411 aptamer nanoconjugate for ultrasensitive spectrofluorometric detection of cancer cells. Sci Rep 7:10513 [DOI: 10.1038/s41598-017-11087-2]
Zheng M, Li Y, Liu S, Wang W, Xie Z, Jing X (2016) One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl Mater Interfaces 8:23533–23541 [DOI: 10.1021/acsami.6b07453]
Wu L, Li X, Ling Y, Huang C, Jia N (2017) Morpholine derivative-functionalized carbon dots-based fluorescent probe for highly selective lysosomal imaging in living cells. ACS Appl Mater Interfaces 9:28222–28232 [DOI: 10.1021/acsami.7b08148]
Wang HJ, He X, Luo TY, Zhang J, Liu YH, Yu XQ (2017) Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery. Nanoscale 9:5935–5947 [DOI: 10.1039/C7NR01029J]
Das RK, Mohapatra S (2017) Highly luminescent, heteroatom-doped carbon quantum dots for ultrasensitive sensing of glucosamine and targeted imaging of liver cancer cells. J Mater Chem B 5:2190–2197 [DOI: 10.1039/C6TB03141B]
Brinker C, Scherer G (1990) Sol-gel science the physics and chemistry of sol-gel processing. Academic Press, Cambrdige
Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69 [DOI: 10.1016/0021-9797(68)90272-5]
Jafarzadeh M, Rahman IA, Sipaut CS (2009) Synthesis of silica nanoparticles by modified sol–gel process: the effect of mixing modes of the reactants and drying techniques. J Sol-Gel Sci Technol 50:328–336 [DOI: 10.1007/s10971-009-1958-6]
Tapec R, Zhao XJ, Tan W (2002) Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J Nanosci Nanotechnol 2:405–409 [DOI: 10.1166/jnn.2002.114]
Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Bakar MA, Adnan R, Chee CK (2007) An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids Surf A Physicochem Eng Asp 294:102–110 [DOI: 10.1016/j.colsurfa.2006.08.001]
Hun X, Bai L (2009) Synthesis of folate conjugated fluorescent nanoparticle probe and its application in cervical cancer cell imaging. Anal Lett 42:2280–2292 [DOI: 10.1080/00032710903082788]
Liu S, Zhang HL, Liu TC, Liu B, Cao YC, Huang ZL, Zhao YD, Luo QM (2007) Optimization of the methods for introduction of amine groups onto the silica nanoparticle surface. J Biomed Mater Res, Part A 80:752–757 [DOI: 10.1002/jbm.a.31026]
Samuel J, Raccurt O, Poncelet O, Auger A, Ling W-L, Cherns P, Grunwald D, Tillement O (2009) Surface characterizations of fluorescent-functionalized silica nanoparticles: from the macroscale to the nanoscale. J Nanoparticle Res 12:2255–2265 [DOI: 10.1007/s11051-009-9792-x]
Thomassen LC, Aerts A, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Napierska D, Hoet PH, Kirschhock CE, Martens JA (2010) Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 26:328–335 [DOI: 10.1021/la902050k]
Lu H-T (2013) Synthesis and characterization of amino-functionalized silica nanoparticles. Colloid J 75:311–318 [DOI: 10.1134/S1061933X13030125]
Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69:132–158 [DOI: 10.1016/j.surfrep.2014.07.001]
Greasley SL, Page SJ, Sirovica S, Chen S, Martin RA, Riveiro A, Hanna JV, Porter AE, Jones JR (2016) Controlling particle size in the Stober process and incorporation of calcium. J Colloid Interface Sci 469:213–223 [DOI: 10.1016/j.jcis.2016.01.065]
Koźlecki T, Polowczyk I, Bastrzyk A, Sawiński W (2016) Improved synthesis of nanosized silica in water-in-oil microemulsions. J Nanoparticles 2016:8203260 [DOI: 10.1155/2016/8203260]
Liu Z, Chen X, Zhang X, Gooding JJ, Zhou Y (2016) Carbon-quantum-dots-loaded mesoporous silica nanocarriers with pH-switchable zwitterionic surface and enzyme-responsive pore-cap for targeted imaging and drug delivery to tumor. Adv Healthc Mater 5:1401–1407 [DOI: 10.1002/adhm.201600002]
Ha SW, Camalier CE, Beck GR Jr, Lee JK (2009) New method to prepare very stable and biocompatible fluorescent silica nanoparticles. Chem Commun (Camb). https://doi.org/10.1039/b902195g,2881-2883 [DOI: 10.1039/b902195g,2881-2883]
Hun X, Zhang Z (2007) Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum. Microchim Acta 159:255–261 [DOI: 10.1007/s00604-007-0755-6]
Keasberry NA, Yapp CW, Idris A (2017) Mesoporous silica nanoparticles as a carrier platform for intracellular delivery of nucleic acids. Biochem Biokhimiia 82:655–662 [DOI: 10.1134/S0006297917060025]
Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2014) Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev 43:4243–4268 [DOI: 10.1039/C3CS60433K]
Rahmani S, Durand J-O, Charnay C, Lichon L, Férid M, Garcia M, Gary-Bobo M (2017) Synthesis of mesoporous silica nanoparticles and nanorods: application to doxorubicin delivery. Solid State Sci 68:25–31 [DOI: 10.1016/j.solidstatesciences.2017.04.003]
Hernandez-Leon SG, Sarabia-Sainz JA, Montfort GR, Guzman-Partida AM, Robles-Burgueno MDR, Vazquez-Moreno L (2017) Novel synthesis of core-shell silica nanoparticles for the capture of low molecular weight proteins and peptides. Molecules 22:1712 [DOI: 10.3390/molecules22101712]
Nallathamby PD, Hopf J, Irimata LE, McGinnity TL, Roeder RK (2016) Preparation of fluorescent Au–SiO2 core–shell nanoparticles and nanorods with tunable silica shell thickness and surface modification for immunotargeting. J Mater Chem B 4:5418–5428 [DOI: 10.1039/C6TB01659F]
Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han C-M, Mahapatra C, Kim H-W, Knowles JC (2016) Sol–gel based materials for biomedical applications. Prog Mater Sci 77:1–79 [DOI: 10.1016/j.pmatsci.2015.12.001]
Vera ML, Canneva A, Huck-Iriart C, Requejo FG, Gonzalez MC, Dell’Arciprete ML, Calvo A (2017) Fluorescent silica nanoparticles with chemically reactive surface: controlling spatial distribution in one-step synthesis. J Colloid Interface Sci 496:456–464 [DOI: 10.1016/j.jcis.2017.02.040]
Tavernaro I, Cavelius C, Peuschel H, Kraegeloh A (2017) Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy. Beilstein J Nanotechnol 8:1283–1296 [DOI: 10.3762/bjnano.8.130]
He X, Wang K, Li D, Tan W, He C, Huang S, Liu B, Lin X, Chen X (2007) A novel DNA-enrichment technology based on amino-modified functionalized silica nanoparticles. J Dispers Sci Technol 24:633–640 [DOI: 10.1081/DIS-120021820]
Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006) Core/Shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories. Small 2:723–726 [DOI: 10.1002/smll.200600017]
Aruna K Munawar TM (2013) Surface modification of silicananoparticles for immobilize probe DNA to identify aspergillus flavus. In: International conference on advanced nanomaterials & emerging engineering technologies. IEEE; Chennai pp 148–149
Wang X, Song P, Peng L, Tong A, Xiang Y (2016) Aggregation-induced emission luminogen-embedded silica nanoparticles containing DNA aptamers for targeted cell imaging. ACS Appl Mater Interfaces 8:609–616 [DOI: 10.1021/acsami.5b09644]
Yun H, Bang H, Min J, Chung C, Chang JK, Han DC (2010) Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer. Lab Chip 10:3243–3254 [DOI: 10.1039/c0lc00041h]
Jiang WJ, Wu CL, Zhang RR (2012) General assembly of organic molecules in core-shell mesoporous silica nanoparticles. Mater Lett 77:100–102 [DOI: 10.1016/j.matlet.2012.03.006]
Jiao Z, Li Z, Zhang H, Pan D, Xu P (2011) Self-assembly of novel core/shell structured blue fluorescent silica nanoparticles. J Control Relase 152:e262-263 [DOI: 10.1016/j.jconrel.2011.09.051]
Chen A, Mu H, Zuo C, Chen Y (2019) Fabrication, characterization, and CMP performance of dendritic mesoporous-silica composite particles with tunable pore sizes. J Alloys Compd 770:335–344 [DOI: 10.1016/j.jallcom.2018.08.173]
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nat Lett 359:710–712 [DOI: 10.1038/359710a0]
Zhao D (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552 [DOI: 10.1126/science.279.5350.548]
Mehmood A, Ghafar H, Yaqoob S, Gohar UF, Ahmad B (2017) Mesoporous silica nanoparticles: a review. J Dev Drugs 6:174 [DOI: 10.4172/2329-6631.1000174]
Rahikkala A, Pereira SAP, Figueiredo P, Passos MLC, Araújo ARTS, Saraiva MLMFS, Santos HA (2018) Mesoporous silica nanoparticles for targeted and stimuli-responsive delivery of chemotherapeutics: a review. Adv Biosyst 2:1800020 [DOI: 10.1002/adbi.201800020]
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA (2019) Mesoporous silica nanoparticles for herapeutic/diagnostic applications. Biomed Pharmacother 109:1100–1111 [DOI: 10.1016/j.biopha.2018.10.167]
Li QL, Wang D, Cui Y, Fan Z, Ren L, Li D, Yu J (2018) AIEgen-functionalized mesoporous silica gated by cyclodextrin-Modified CuS for cell imaging and chemo-photothermal cancer therapy. ACS Appl Mater Interfaces 10:12155–12163 [DOI: 10.1021/acsami.7b14566]
Hurley MT, Wang Z, Mahle A, Rabin D, Liu Q, English DS, Zachariah MR, Stein D, DeShong P (2013) Synthesis, characterization, and application of antibody functionalized fluorescent silica nanoparticles. Adv Funct Mater 23:3335–3343 [DOI: 10.1002/adfm.201202699]
Yang KN, Zhang CQ, Wang W, Wang PC, Zhou JP, Liang XJ (2014) pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med 11:34–43
Vallet-Regi M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 46:7548–7558 [DOI: 10.1002/anie.200604488]
Regi-Vallet M, Rámila A, Del Real RP, Pariente-Pérez J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311 [DOI: 10.1021/cm0011559]
Wu X, Wu M, Zhao JX (2014) Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomed Nanotechnol Biol Med 10:297–312 [DOI: 10.1016/j.nano.2013.08.008]
Lin AL, Li SZ, Xu CH, Li XS, Zheng BY, Gu JJ, Ke MR, Huang JD (2018) A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy. Biomaterials science 7:211–219 [DOI: 10.1039/C8BM00386F]
Cha BG, Kim J (2019) Functional mesoporous silica nanoparticles for bio-imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1515
Singh RK, Patel KD, Leong KW, Kim HW (2017) Progress in nanotheranostics based on mesoporous silica nanomaterial platforms. ACS Appl Mater Interfaces 9:10309–10337 [DOI: 10.1021/acsami.6b16505]
Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir ACS J Surf Colloids 22:4357–4362 [DOI: 10.1021/la052797j]
Christina AB, Chi G, Likens OQ, Brown SM (2017) A convenient, bio-inspired approach to the synthesis of multi-functional, stable fluorescent silica nanoparticles using poly (ethylene-imine). Nanoscale 2017:6509–6520
Kotsuchibashi Y, Ebara M, Aoyagi T, Narain R (2012) Fabrication of doubly responsive polymer functionalized silica nanoparticles via a simple thiol–ene click chemistry. Polym Chem 3:2545 [DOI: 10.1039/c2py20333b]
Saroj S, Rajput SJ (2018) Composite smart mesoporous silica nanoparticles as promising therapeutic and diagnostic candidates: recent trends and applications. J Drug Deliv Sci Technol 44:349–365 [DOI: 10.1016/j.jddst.2018.01.014]
Chen H, Wang GD, Sun X, Todd T, Zhang F, Xie J, Shen B (2016) Mesoporous silica as nanoreactors to prepare Gd-encapsulated carbon dots of controllable sizes and magnetic properties. Adv Funct Mater 26:3973–3982 [DOI: 10.1002/adfm.201504177]
Cabañas MV, Lozano D, Torres-Pardo A, Sobrino C, González-Calbet J, Arcos D, Vallet-Regí M (2018) Features of aminopropyl modified mesoporous silica nanoparticles. Implications on the active targeting capability. Mater Chem Phys 220:260–269 [DOI: 10.1016/j.matchemphys.2018.09.005]
Sahu S, Sinha N, Bhutia SK, Majhi M, Mohapatra S (2014) Luminescent magnetic hollow mesoporous silica nanotheranostics for camptothecin delivery and multimodal imaging. J Mater Chem B 2:3799–3808 [DOI: 10.1039/C3TB21669A]
Tao C, Zhu Y (2014) Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Dalton Trans 43:15482–15490 [DOI: 10.1039/C4DT01984A]
Kim D, Kim J, Lee K-W, Lee TS (2019) Removal of sodium dodecylbenzenesulfonate using surface-functionalized mesoporous silica nanoparticles. Microporous Mesoporous Mater 275:270–277 [DOI: 10.1016/j.micromeso.2018.09.007]
Clemente A, Moreno N, Lobera MP, Balas F, Santamaria J (2018) Versatile hollow fluorescent metal-silica nanohybrids through a modified microemulsion synthesis route. J Colloid Interface Sci 513:497–504 [DOI: 10.1016/j.jcis.2017.11.055]
Wang Y, Yin M, Lin X, Li L, Li Z, Ren X, Sun Y (2019) Tailored synthesis of polymer-brush-grafted mesoporous silicas with N-halamine and quaternary ammonium groups for antimicrobial applications. J Colloid Interface Sci 533:604–611 [DOI: 10.1016/j.jcis.2018.08.080]
Du X, Qiao SZ (2015) Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications. Small 11:392–413 [DOI: 10.1002/smll.201401201]
Polshettiwar V, Cha D, Zhang X, Basset JM (2010) High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew Chem Int Ed Engl 49:9652–9656 [DOI: 10.1002/anie.201003451]
Yang J, Chen W, Shen D, Wei Y, Ran X, Teng W, Fan J, Zhang W-X, Zhao D (2014) Controllable fabrication of dendritic mesoporous silica–carbon nanospheres for anthracene removal. J Mater Chem A 2:11045 [DOI: 10.1039/c4ta01516a]
Yang J, Shen D, Wei Y, Li W, Zhang F, Kong B, Zhang S, Teng W, Fan J, Zhang W, Dou S, Zhao D (2015) Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res 8:2503–2514 [DOI: 10.1007/s12274-015-0758-2]
Shen D, Yang J, Li X, Zhou L, Zhang R, Li W, Chen L, Wang R, Zhang F, Zhao D (2014) Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett 14:923–932 [DOI: 10.1021/nl404316v]
Du X, Li X, Huang H, He J, Zhang X (2015) Dendrimer-like hybrid particles with tunable hierarchical pores. Nanoscale 7:6173–6184 [DOI: 10.1039/C5NR00640F]
Yu C, Abbaraju LP, Yang Y, Yu M, Fu J, Xu C (2017) Core-shell-structured dendritic mesoporous silica nanoparticles for combined photodynamic therapy and antibody delivery. Chem Asian J 12:1465–1469 [DOI: 10.1002/asia.201700392]
Yano K, Fukushima Y (2004) Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant. J Mater Chem B 14:1579 [DOI: 10.1039/b313712k]
Sun Z, Li H, Cui G, Tian Y, Yan S (2016) Multifunctional magnetic core–shell dendritic mesoporous silica nanospheres decorated with tiny Ag nanoparticles as a highly active heterogeneous catalyst. Appl Surf Sci 360:252–262 [DOI: 10.1016/j.apsusc.2015.11.013]
Xing Y, Du X, Li X, Huang H, Li J, Wen Y, Zhang X (2018) Tunable dendrimer-like porous silica nanospheres: effects of structures and stacking manners on surface wettability. J Alloys Compd 732:70–79 [DOI: 10.1016/j.jallcom.2017.10.190]
Yamada N (1998) Photoluminescence from Carbon/Silica Gel Nanocomposite. In: Yoshimura S, Chang RPH (eds) Supercarbon. Springer Berlin Heidelberg, Berlin, pp 211–225 [DOI: 10.1007/978-3-662-03569-6_16]
Yoshimura S, Chang RPH (1998) Supercarbon synthesis, properties and applications. Springer, Cham [DOI: 10.1007/978-3-662-03569-6]
Guo Z, Zhu Z, Zhang X, Chen Y (2018) Facile synthesis of blue-emitting carbon dots@mesoporous silica composite spheres. Solid State Sci 76:100–104 [DOI: 10.1016/j.solidstatesciences.2017.12.011]
Zou Y, Yan F, Zheng T, Shi D, Sun F, Yang N, Chen L (2015) Highly luminescent organosilane-functionalized carbon dots as a nanosensor for sensitive and selective detection of quercetin in aqueous solution. Talanta 135:145–148 [DOI: 10.1016/j.talanta.2014.12.029]
Kang MS, Singh RK, Kim TH, Kim JH, Patel KD, Kim HW (2017) Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater 55:466–480 [DOI: 10.1016/j.actbio.2017.03.054]
Yang W, Zhang G, Ni J, Lin Z (2020) Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots. Mikrochim Acta 187:137 [DOI: 10.1007/s00604-019-4105-2]
Zhao S, Sun S, Jiang K, Wang Y, Liu Y, Wu S, Li Z, Shu Q, Lin H (2019) In situ synthesis of fluorescent mesoporous silica–carbon dot nanohybrids featuring folate receptor-overexpressing cancer cell targeting and drug delivery. Nano-Micro Lett 11:32 [DOI: 10.1007/s40820-019-0263-3]
da Silva ACP, de Freitas CF, Cardinali CAEF, Braga TL, Caetano W, Ravanelli MIB, Hioka N, Tessaro AL (2022) Biotin-functionalized silica nanoparticles loaded with Erythrosine B asselective photodynamic treatment for Glioblastoma Multiforme. J Mol Liq 345:117898 [DOI: 10.1016/j.molliq.2021.117898]
von Baeckmann C, Kahlig H, Linden M, Kleitz F (2021) On the importance of the linking chemistry for the PEGylation of mesoporous silica nanoparticles. J Colloid Interface Sci 589:453–461 [DOI: 10.1016/j.jcis.2020.12.004]
Gao F, Lei C, Liu Y, Song H, Kong Y, Wan J, Yu C (2021) Rational design of dendritic mesoporous silica nanoparticles’ surface chemistry for quantum dot enrichment and an ultrasensitive lateral flow immunoassay. ACS Appl Mater Interfaces 13:21507–21515 [DOI: 10.1021/acsami.1c02149]
Sreejith S, Kishor R, Abbas A, Thomas R, Yeo T, Ranjan VD, Vaidyanathan R, Seah YP, Xing B, Wang Z, Zeng L, Zheng Y, Lim CT (2019) Nanomechanical microfluidic mixing and rapid labeling of silica nanoparticles using allenamide-thiol covalent linkage for bioimaging. ACS Appl Mater Interfaces 11:4867–4875 [DOI: 10.1021/acsami.8b20315]
Hasany M, Taebnia N, Yaghmaei S, Shahbazi MA, Mehrali M, Dolatshahi-Pirouz A, Arpanaei A (2019) Silica nanoparticle surface chemistry: an important trait affecting cellular biocompatibility in two and three dimensional culture systems. Colloids Surf B Biointerfaces 182:110353 [DOI: 10.1016/j.colsurfb.2019.110353]
Zou C, Foda MF, Tan X, Shao K, Wu L, Lu Z, Bahlol HS, Han H (2016) Carbon-dot and quantum-dot-coated dual-emission core-satellite silica nanoparticles for ratiometric intracellular Cu(2+) imaging. Anal Chem 88:7395–7403 [DOI: 10.1021/acs.analchem.6b01941]
Innocenzi P, Malfatti L, Carboni D (2015) Graphene and carbon nanodots in mesoporous materials: an interactive platform for functional applications. Nanoscale 7:12759–12772 [DOI: 10.1039/C5NR03773E]
Malfatti L, Innocenzi P (2018) Sol-gel chemistry for carbon dots. Chem Rec 18:1192–1202 [DOI: 10.1002/tcr.201700108]
Prasad R, Aiyer S, Chauhan DS, Srivastava R, Selvaraj K (2016) Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics. Nanoscale 8:4537–4546 [DOI: 10.1039/C5NR06756A]
Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD (2017) Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 5:901–952 [DOI: 10.1039/C7BM00008A]
Tang H, Wang M, Meng C, Tao W, Wang C, Yu H (2019) Research on design, fabrication, and properties of Fe2O3@SiO2/CDs/PEG@nSiO2 nanocomposites. Mater Lett 235:39–41 [DOI: 10.1016/j.matlet.2018.09.149]
Zhang Q, Li X, Peng L, Zou X, Zhao Y (2021) Porous silica nanoparticles capped with polyethylenimine/green carbon dots for pH/redox responsive drug release. Inorg Chem Commun 123:108340 [DOI: 10.1016/j.inoche.2020.108340]
He L, Zhang H, Fan H, Jiang X, Zhao W, Xiang GQ (2018) Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for vanadium(V) detection in mineral water samples. Spectrochim Acta A Mol Biomol Spectrosc 189:51–56 [DOI: 10.1016/j.saa.2017.08.010]
Gao G, Jiang Y-W, Jia H-R, Yang J, Wu F-G (2018) On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 134:232–243 [DOI: 10.1016/j.carbon.2018.02.063]
Cui C, Lei J, Yang L, Shen B, Wang L, Zhang J (2018) Carbon-dot-encapsulated molecularly imprinted mesoporous organosilica for fluorescent sensing of rhodamine 6G. Res Chem Intermed 44:4633–4640 [DOI: 10.1007/s11164-018-3279-2]
Yadav RK, Kumar A, Park N-J, Yadav D, Baeg J-O (2017) New carbon nanodots-silica hybrid photocatalyst for highly selective solar fuel production from CO2. ChemCatChem 9:3153–3159 [DOI: 10.1002/cctc.201700789]
Tian Y, Zhipeng R, Yang W (2017) Carbon dot-silica composite nanoparticle: an excitation-independent fluorescence material with tunable fluorescence. RSC Adv 7:43839–43844 [DOI: 10.1039/C7RA07990G]
Sciortino L, Messina F, Buscarino G, Agnello S, Cannas M, Gelardi FM (2017) Nitrogen-doped carbon dots embedded in a SiO2 monolith for solid-state fluorescent detection of Cu2+ ions. J Nanopart Res 19:228 [DOI: 10.1007/s11051-017-3915-6]
Xiang G, Wang Y, Zhang H, Fan H, Fan L, He L, Jiang X, Zhao W (2018) Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples. Food Chem 260:13–18 [DOI: 10.1016/j.foodchem.2018.03.150]
Amjadi M, Jalili RA (2018) molecularly imprinted dual-emission carbon dot-quantum dot mesoporous hybrid for ratiometric determination of anti-inflammatory drug celecoxib. Spectrochim Acta Part A Mol Biomol Spectrosc 191:345–351 [DOI: 10.1016/j.saa.2017.10.026]
BelBruno JJ (2018) Molecularly imprinted polymers. Chem Rev 20191:94–119
Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211 [DOI: 10.1039/C6CS00061D]
Hashemi-Moghaddam H, Mowla SJ, Nouraee N (2016) Separation of microRNA 21 as a cancer marker from glioblastoma cell line using molecularly imprinted polymer coated on silica nanoparticles. J Sep Sci 39:3564–3570 [DOI: 10.1002/jssc.201600736]
Demir B, Lemberger MM, Panagiotopoulou M, Medina Rangel PX, Timur S, Hirsch T, Tse Sum Bui B, Wegener J, Haupt K (2018) Tracking hyaluronan: molecularly imprinted polymer coated carbon dots for cancer cell targeting and imaging. ACS Appl Mater Interfaces 10:3305–3313 [DOI: 10.1021/acsami.7b16225]
Shirani MP, Rezaei B, Ensafi AA (2019) A novel optical sensor based on carbon dots embedded molecularly imprinted silica for selective acetamiprid detection. Spectrochim Acta A Mol Biomol Spectrosc 210:36–43 [DOI: 10.1016/j.saa.2018.08.030]
Lv P, Xie D, Zhang Z (2018) Magnetic carbon dots based molecularly imprinted polymers for fluorescent detection of bovine hemoglobin. Talanta 188:145–151 [DOI: 10.1016/j.talanta.2018.05.068]
Amjadi M, Jalili R (2017) Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole. Biosens Bioelectron 96:121–126 [DOI: 10.1016/j.bios.2017.04.045]
Sharma SN, Pillai ZS, Kamat VP (2003) Photoinduced charge transfer between CdSe quantum dots and p-phenylenediamine. J Phys Chem B 107:10088–10093 [DOI: 10.1021/jp034109f]
Zhang Y, Jing P, Zeng Q, Sun Y, Su Y, Wang YA, Kong X, Zhao J, Zhang H (2009) Photoluminescence quenching of CdSe core/shell quantum dots by hole transporting materials. J Phys Chem C 113:1886–1890 [DOI: 10.1021/jp808190v]
Shariati R, Rezaei B, Jamei HR, Ensafi AA (2019) Application of coated green source carbon dots with silica molecularly imprinted polymers as a fluorescence probe for selective and sensitive determination of phenobarbital. Talanta 194:143–149 [DOI: 10.1016/j.talanta.2018.09.069]
Teymoorian T, Hashemi N, Mousazadeh MH, Entezarian Z (2021) N, S doped carbon quantum dots inside mesoporous silica for effective adsorption of methylene blue dye. SN Appl Sci 3:305 [DOI: 10.1007/s42452-021-04287-z]
Dong Y, Ma J, Liu C, Bao Y (2020) Ordered mesoporous silica encapsulated carbon quantum dots and its application in Fe3+ detection. Ceram Int 46:11115–11123 [DOI: 10.1016/j.ceramint.2020.01.131]
Amiri A, Faridbod F, Zoughi S (2021) An optical nanosensor fabricated by carbon dots embedded in silica molecularly imprinted polymer for sensitive detection of ceftazidime antibiotic. J Photochem Photobiol A Chem 408:113111 [DOI: 10.1016/j.jphotochem.2020.113111]
Liu G, Chen Z, Jiang X, Feng D-Q, Zhao J, Fan D, Wang W (2016) In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sens Actuators B Chem 228:302–307 [DOI: 10.1016/j.snb.2016.01.010]
Yang J, Lin ZZ, Nur AZ, Lu Y, Wu MH, Zeng J, Chen XM, Huang ZY (2018) Detection of trace tetracycline in fish via synchronous fluorescence quenching with carbon quantum dots coated with molecularly imprinted silica. Spectrochim Acta Part A Mol Biomol Spectrosc 190:450–456 [DOI: 10.1016/j.saa.2017.09.066]
Wang R, Li G, Dong Y, Chi Y, Chen G (2013) Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal Chem 85:8065–8069 [DOI: 10.1021/ac401880h]
Wang L, Zhang H, Zhou X, Liu Y, Lei B (2016) Preparation, characterization and oxygen sensing properties of luminescent carbon dots assembled mesoporous silica microspheres. J Colloid Interface Sci 478:256–262 [DOI: 10.1016/j.jcis.2016.06.026]
Danielsson I, Lindman B (1981) The definition of microemulsion. Colloids Surf 3:391–392 [DOI: 10.1016/0166-6622(81)80064-9]
Moulik SP, Animesh KR (2006) Physicochemistry and applications of micro-emulsions. J Surface Sci Technol 22:159–118
Flores ME, Martinez F, Olea AF, Shibue T, Sugimura N, Nishide H, Moreno-Villoslada I (2017) Water-induced phase transition in Cyclohexane/n-Hexanol/Triton X-100 mixtures at a molar composition of 1/16/74 studied by NMR. J Phys Chem B 121:876–882 [DOI: 10.1021/acs.jpcb.6b11752]
McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729 [DOI: 10.1039/C2SM06903B]
Stubenrauch C (2008) Microemulsions- background, new concepts, applications Wiley-Blackwell, New Jersey
Magno M, Angelescu DG, Stubenrauch C (2009) Phase diagrams of non-ionic microemulsions containing reducing agents and metal salts as bases for the synthesis of bimetallic nanoparticles. Colloids Surf A Physicochem Eng Asp 348:116–123 [DOI: 10.1016/j.colsurfa.2009.07.002]
Ganguli AK, Ganguly A, Vaidya S (2010) Microemulsion-based synthesis of nanocrystalline materials. Chem Soc Rev 39:474–485 [DOI: 10.1039/B814613F]
Pasquali RC, Taurozzi MP, Bregni C (2008) Some considerations about the hydrophilic-lipophilic balance system. Int J Pharm 356:44–51 [DOI: 10.1016/j.ijpharm.2007.12.034]
Jaramillo N, Paucar C, García C (2014) Influence of the reaction time and the Triton x–100/Cyclohexane/Methanol/H2O ratio on the morphology and size of silica nanoparticles synthesized via sol–gel assisted by reverse micelle microemulsion. J Mater Sci 49:3400–3406 [DOI: 10.1007/s10853-014-8049-y]
Wang J, Tsuzuki T, Sun L, Wang X (2010) Reverse microemulsion-mediated synthesis of SiO(2)-coated ZnO composite nanoparticles: multiple cores with tunable shell thickness. ACS Appl Mater Interfaces 2:957–960 [DOI: 10.1021/am100051z]
Qui S, Dong J, Chen G (1999) Preparation of Cu nanoparticles from water-in-oil microemulsions. J Colloid Interface Sci 216:230–234 [DOI: 10.1006/jcis.1999.6296]
Biswas S, Hait SK, Bhattacharya SC, Moulik SP (2005) Synthesis of nanoparticles of CuI, CuCrO4, and CuS in Water/AOT/Cyclohexanone and Water/TX-100 + i-propanol/cyclohexanone reverse microemulsions. J Dispers Sci Technol 25:801–816 [DOI: 10.1081/DIS-200035591]
Li J, Yang X, Yang P, Gao F (2016) Hyaluronic acid–conjugated silica nanoparticles for breast cancer therapy. Inorg Nano-Met Chem 47:777–782 [DOI: 10.1080/15533174.2016.1218509]
Giovannini G, Kunc F, Piras CC, Stranik O, Edwards AA, Hall AJ, Gubala V (2017) Stabilizing silica nanoparticles in hydrogels: impact on storage and polydispersity. RSC Adv 7:19924–19933 [DOI: 10.1039/C7RA02427D]
Chen Q, Shen X, Gao H (2007) Formation of nanoparticles in water-in-oil microemulsions controlled by the yield of hydrated electron: the controlled reduction of Cu2+. J Colloid Interface Sci 308:491–499 [DOI: 10.1016/j.jcis.2006.12.021]
Richard B, Lemyre J-L, Ritcey AM (2017) Nanoparticle size control in microemulsion synthesis. Langmuir ACS J Surf Colloids 33:4748–4757 [DOI: 10.1021/acs.langmuir.7b00773]
Tojo C, Blanco MC, Rivadulla F, López-Quintela MA (1997) Kinetics of the formation of particles in microemulsions. Langmuir ACS J Surf Colloids 13:1970–1977 [DOI: 10.1021/la9607870]
Wang W, Fu X-A, Tang J-A, Jiang L (1993) Preparation of submicron spherical particles of silica by the water-in-oil microemulsion method. Colloids Surf A Physicochem Eng Asp 81:177–180 [DOI: 10.1016/0927-7757(93)80244-9]
Hristov DR, Mahon E, Dawson AK (2015) Controlling aqueous silica nanoparticle synthesis in the 10–100 nm range. Chem Commun 51:17420–17423 [DOI: 10.1039/C5CC06598D]
Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir ACS J Surf Colloids 20:8336–8342 [DOI: 10.1021/la049137j]
Arriagada FJ, Osseo-Assare K (1998) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 211:210–220 [DOI: 10.1006/jcis.1998.5985]
Sun Y, Wang X, Wu J, Fu Y, Zhang J, Li H, Li W (2010) Effects of surfactant/water ratio and dye amount on the fluorescent silica nanoparticles. Colloid J 72:723–729 [DOI: 10.1134/S1061933X10050212]
Abarkan I, Doussineau T, Smaïhi M (2006) Tailored macro/microstructural properties of colloidal silica nanoparticles via microemulsion preparation. Polyhedron 25:1763–1770 [DOI: 10.1016/j.poly.2005.11.031]
Gustafsson H, Isaksson S, Altskar A, Holmberg K (2016) Mesoporous silica nanoparticles with controllable morphology prepared from oil-in-water emulsions. J Colloid Interface Sci 467:253–260 [DOI: 10.1016/j.jcis.2016.01.026]
Liu X, Zhang N, Bing T, Shangguan D (2014) Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu(2+). Anal Chem 86:2289–2296 [DOI: 10.1021/ac404236y]
Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84:6220–6224 [DOI: 10.1021/ac3012126]
Molaei MJ (2019) A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 196:456–478 [DOI: 10.1016/j.talanta.2018.12.042]
Ji C, Zhou Y, Leblanc RM, Peng Z (2020) Recent developments of carbon dots in biosensing: a review. ACS sensors 5:2724–2741 [DOI: 10.1021/acssensors.0c01556]
Qiao Y, Liu C, Zheng X (2018) Enhancing the quantum yield and Cu2+ sensing sensitivity of carbon dots based on the nano-space confinement effect of silica matrix. Sens Actuators B Chem 259:211–218 [DOI: 10.1016/j.snb.2017.12.061]
Han X, Han Y, Huang H, Zhang H, Zhang X, Liu R, Liu Y, Kang Z (2013) Synthesis of carbon quantum dots/SiO2 porous nanocomposites and their catalytic ability for photo-enhanced hydrocarbon selective oxidation. Dalton Trans 42:10380–10383 [DOI: 10.1039/c3dt51165k]
Wei JM, Liu BT, Zhang X, Song CC (2018) One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection. New Carbon Mater 33:333–340 [DOI: 10.1016/S1872-5805(18)60343-9]
Mintz K, Waidely E, Zhou Y, Peng Z, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM (2018) Carbon dots and gold nanoparticles based immunoassay for detection of alpha-L-fucosidase. Anal Chim Acta 1041:114–121 [DOI: 10.1016/j.aca.2018.08.055]
Wu Y, Wei P, Pengpumkiat S, Schumacher EA, Remcho VT (2016) A novel ratiometric fluorescent immunoassay for human α-fetoprotein based on carbon nanodot-doped silica nanoparticles and FITC. Anal Methods 8:5398–5406 [DOI: 10.1039/C6AY01171C]
Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902 [DOI: 10.1021/ar2000259]
Zhao Q, Wang S, Yang Y, Li X, Di D, Zhang C, Jiang T (2017) Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzyme-triggered targeted drug delivery and bioimaging. Mater Sci Eng C Mater Biol Appl 78:475–484 [DOI: 10.1016/j.msec.2017.04.059]
Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40:6315–6343 [DOI: 10.1039/c0dt00689k]
Das S, Debnath N, Cui Y, Unrine J, Palli SR (2015) Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in aedes aegypti: a comparative analysis. ACS Appl Mater Interfaces 7:19530–19535 [DOI: 10.1021/acsami.5b05232]
Kim J, Park J, Kim H, Singha K, Kim WJ (2013) Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials 34:7168–7180 [DOI: 10.1016/j.biomaterials.2013.05.072]
Sood A, Arora V, Shah J, Kotnala RK, Jain TK (2017) Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater Sci Eng C Mater Biol Appl 80:274–281 [DOI: 10.1016/j.msec.2017.05.079]
Das RK, Pramanik A, Majhi M, Mohapatra S (2018) Magnetic mesoporous silica gated with doped carbon dot for site-specific drug delivery, fluorescence, and MR imaging. Langmuir ACS J Surf Colloids 34:5253–5262 [DOI: 10.1021/acs.langmuir.7b04268]
Rashid M, Ahmad QZ, Tajuddin (2019) Trends in nanotechnology for practical applications. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Applications of targeted nano drugs and delivery systems. Elsevier, Amsterdam
Wang Y, Shi W, Wang S, Li C, Qian M, Chen J, Huang R (2016) Facile incorporation of dispersed fluorescent carbon nanodots into mesoporous silica nanosphere for pH-triggered drug delivery and imaging. Carbon 108:146–153 [DOI: 10.1016/j.carbon.2016.07.009]
Pathak C, Vaidya FU, Pandey SM (2019) Mechanism for development of nanobased drug delivery system. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Applications of targeted nano drugs and delivery systems. Elsevier, Amsterdam
Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res Official J American Assoc Cancer Res 14:1310–1316 [DOI: 10.1158/1078-0432.CCR-07-1441]
Wu D, Si M, Xue HY, Wong HL (2017) Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomed 12:5879–5892 [DOI: 10.2147/IJN.S123437]
Manaia EB, Abucafy MP, Chiari-Andreo BG, Silva BL, Oshiro Junior JA, Chiavacci LA (2017) Physicochemical characterization of drug nanocarriers. Int J Nanomed 12:4991–5011 [DOI: 10.2147/IJN.S133832]
Mo R, Gu Z (2016) Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater Today 19:274–283 [DOI: 10.1016/j.mattod.2015.11.025]
Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12:129–142 [DOI: 10.1517/17425247.2014.950564]
Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S (2016) Role of nanoparticle size, shape and surface chemistry in oral drug delivery. Journal of controlled release : official journal of the Controlled Release Society 238:176–185 [DOI: 10.1016/j.jconrel.2016.07.051]
Zhao T, Chen L, Li Q, Li X (2018) Near-infrared light triggered drug release from mesoporous silica nanoparticles. J Mater Chem B 6:7112–7121 [DOI: 10.1039/C8TB01548A]
Jindal AB (2017) The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 532:450–465 [DOI: 10.1016/j.ijpharm.2017.09.028]
Delic A, Mariussen E, Roede ED, Krivokapic A, Erbe A, Lindgren M, Benelmekki M, Einarsrud MA (2021) Fluorescent nanocomposites: hollow silica microspheres with embedded carbon dots. ChemPlusChem 86:176–183 [DOI: 10.1002/cplu.202000801]
Chen Y, Li X, Zhao Y, Zhang X, Sun L (2020) Preparation of triple-responsive porous silica carriers and carbon quantum dots for photodynamic-/chemotherapy and multicolor cell imaging. ChemNanoMat 6:648–656 [DOI: 10.1002/cnma.201900777]
Zhou B, Guo Z, Lin Z, Zhang L, Jiang B-P, Shen X-C (2019) Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg Chem Front 6:1116–1128 [DOI: 10.1039/C9QI00201D]
Sun S, Zhao S, Jiang K, Wang Y, Shu Q, Jin S, Li Z, Lin H (2020) A facile approach to carbon dots-mesoporous silica nanohybrids and their applications for multicolor and two-photon imaging guided chemo-/photothermal synergistic oncotherapy. ChemNanoMat 6:953–962 [DOI: 10.1002/cnma.202000101]
Chen Y, Zhao Y, Zou X, Sun L (2021) Porous silica nanocarriers with gold/carbon quantum dots for photo-chemotherapy and cellular imaging. J Drug Deliv Sci Technol 61:102141 [DOI: 10.1016/j.jddst.2020.102141]
Liu Y, Liu X, Xiao Y, Chen F, Xiao F (2017) A multifunctional nanoplatform based on mesoporous silica nanoparticles for imaging-guided chemo/photodynamic synergetic therapy. RSC Adv 7:31133–31141 [DOI: 10.1039/C7RA04549B]
Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288 [DOI: 10.1016/j.addr.2008.03.012]
He Z, Liu K, Byrne HJ, Cullen PJ, Tian F, Curtin JF (2019) Combination strategies for targeted delivery of nanoparticles for cancer therapy. In: Mohapatra S, Ranjan S, Dasgupta D, Mishra R, Thomas S (eds) Applications of targeted nano drugs and delivery systems: nanoscience and nanotechnology in drug delivery. Elseveir, Amsterdam, pp 191–219 [DOI: 10.1016/B978-0-12-814029-1.00008-9]
Zhao L, Ren X, Zhang J, Zhang W, Chen X, Meng X (2020) Dendritic silica with carbon dots and gold nanoclusters for dual nanozymes. New J Chem 44:1988–1992 [DOI: 10.1039/C9NJ05655F]
Chavda VP (2019) Nanobased nano drug delivery: a comprehensive review. In: Mohapatra S, Ranjan S, Dasgupta N, Kumar R, Thomas S (eds) Applications of targeted nano drugs and delivery systems. Elsevier, Amsterdam, pp 69–92 [DOI: 10.1016/B978-0-12-814029-1.00004-1]
Shirani MP, Rezaei B, Khayamian T, Dinari M, Shamili FH, Ramezani M, Alibolandi M (2018) Ingenious pH-sensitive etoposide loaded folic acid decorated mesoporous silica-carbon dot with carboxymethyl-betacyclodextrin gatekeeper for targeted drug delivery and imaging. Mater Sci Eng C Mater Biol Appl 92:892–901 [DOI: 10.1016/j.msec.2018.07.043]
Li X, Wang W, Li Q, Lin H, Xu Y, Zhuang L (2018) Design of Fe3O4@SiO2@mSiO2-organosilane carbon dots nanoparticles: synthesis and fluorescence red-shift properties with concentration dependence. Mater Des 151:89–101 [DOI: 10.1016/j.matdes.2018.04.051]
Mohapatra S, Sahu S, Nayak S, Ghosh SK (2015) Design of Fe(3)O(4)@SiO(2)@carbon quantum dot based nanostructure for fluorescence sensing, magnetic separation, and live cell imaging of fluoride ion. Langmuir 31:8111–8120 [DOI: 10.1021/acs.langmuir.5b01513]
Wang M, Fu Q, Zhang K, Wan Y, Wang L, Gao M, Xia Z, Gao D (2019) A magnetic and carbon dot based molecularly imprinted composite for fluorometric detection of 2,4,6-trinitrophenol. Mikrochim Acta 186:86 [DOI: 10.1007/s00604-018-3200-0]
Liu X, Liu L, Hu X, Zhou S, Ankri R, Fixler D, Xie Z (2018) Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection. Nano Res 11:1262–1273 [DOI: 10.1007/s12274-017-1739-4]

Word Cloud

Similar Articles

Cited By