The Rice Serine/Arginine Splicing Factor RS33 Regulates Pre-mRNA Splicing during Abiotic Stress Responses.

Haroon Butt, Jeremie Bazin, Kasavajhala V S K Prasad, Nourelislam Awad, Martin Crespi, Anireddy S N Reddy, Magdy M Mahfouz
Author Information
  1. Haroon Butt: Laboratory for Genome Engineering and Synthetic Biology, Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. ORCID
  2. Jeremie Bazin: CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France.
  3. Kasavajhala V S K Prasad: Department of Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. ORCID
  4. Nourelislam Awad: Helmy Institute of Biomedical Science, Zewail City of Science and Technology, Ahmed Zewail Road, Giza 12578, Egypt. ORCID
  5. Martin Crespi: CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France. ORCID
  6. Anireddy S N Reddy: Department of Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
  7. Magdy M Mahfouz: Laboratory for Genome Engineering and Synthetic Biology, Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. ORCID

Abstract

Abiotic stresses profoundly affect plant growth and development and limit crop productivity. Pre-mRNA splicing is a major form of gene regulation that helps plants cope with various stresses. Serine/arginine (SR)-rich splicing factors play a key role in pre-mRNA splicing to regulate different biological processes under stress conditions. Alternative splicing (AS) of SR transcripts and other transcripts of stress-responsive genes generates multiple splice isoforms that contribute to protein diversity, modulate gene expression, and affect plant stress tolerance. Here, we investigated the function of the plant-specific SR protein RS33 in regulating pre-mRNA splicing and abiotic stress responses in rice. The loss-of-function mutant showed increased sensitivity to salt and low-temperature stresses. Genome-wide analyses of gene expression and splicing in wild-type and seedlings subjected to these stresses identified multiple splice isoforms of stress-responsive genes whose AS are regulated by RS33. The number of RS33-regulated genes was much higher under low-temperature stress than under salt stress. Our results suggest that the plant-specific splicing factor RS33 plays a crucial role during plant responses to abiotic stresses.

Keywords

References

  1. Funct Integr Genomics. 2011 Jun;11(2):293-305 [PMID: 21213008]
  2. DNA Res. 2005 Feb 28;12(1):9-26 [PMID: 16106749]
  3. Plant Cell. 2015 Dec;27(12):3294-308 [PMID: 26603559]
  4. Mol Cells. 2017 Jan;40(1):1-9 [PMID: 28152302]
  5. Plant Physiol. 2010 Oct;154(2):772-83 [PMID: 20699397]
  6. PLoS Genet. 2013;9(10):e1003875 [PMID: 24146632]
  7. Sci Rep. 2019 Nov 19;9(1):17030 [PMID: 31745110]
  8. Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65 [PMID: 23385723]
  9. BMC Plant Biol. 2018 Aug 29;18(1):174 [PMID: 30157762]
  10. Plant Cell. 2006 Jul;18(7):1736-49 [PMID: 16751345]
  11. Mol Cell. 2019 Oct 17;76(2):329-345 [PMID: 31626751]
  12. Plant J. 2017 Jan;89(2):291-309 [PMID: 27664942]
  13. Hortic Res. 2019 Nov 8;6:122 [PMID: 31728197]
  14. Mol Cell. 2010 Apr 9;38(1):67-77 [PMID: 20385090]
  15. RNA. 2015 Jan;21(1):75-92 [PMID: 25414008]
  16. Biochem J. 2009 Jan 1;417(1):15-27 [PMID: 19061484]
  17. Plant Cell Physiol. 2007 Jul;48(7):1036-49 [PMID: 17556373]
  18. Int J Mol Sci. 2017 Feb 20;18(2): [PMID: 28230724]
  19. Plant Cell. 2011 Jan;23(1):396-411 [PMID: 21258002]
  20. Plant Mol Biol. 2011 Apr;75(6):593-605 [PMID: 21331630]
  21. Rice (N Y). 2019 Oct 21;12(1):76 [PMID: 31637532]
  22. Genome Biol. 2009;10(10):242 [PMID: 19857271]
  23. Science. 2010 Sep 10;329(5997):1355-8 [PMID: 20829488]
  24. Sci Rep. 2020 Jun 19;10(1):9958 [PMID: 32561778]
  25. Plant Mol Biol. 2009 May;70(1-2):79-102 [PMID: 19199050]
  26. Dev Cell. 2001 Dec;1(6):771-81 [PMID: 11740939]
  27. Science. 2014 Apr 25;344(6182):427-30 [PMID: 24763593]
  28. Synth Biol (Oxf). 2021 Sep 02;6(1):ysab025 [PMID: 34522785]
  29. Cold Spring Harb Perspect Biol. 2019 Nov 1;11(11): [PMID: 30765414]
  30. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10296-301 [PMID: 20479230]
  31. Plant Physiol. 2009 Jul;150(3):1450-8 [PMID: 19403727]
  32. Plant Cell. 2010 Sep;22(9):2926-9 [PMID: 20884799]
  33. Nucleic Acids Res. 2006 Jun 28;34(11):3267-78 [PMID: 16807317]
  34. Plant Physiol. 2017 Apr;173(4):2370-2382 [PMID: 28223317]
  35. BMC Genomics. 2015 Sep 25;16(1):731 [PMID: 26407850]
  36. Front Plant Sci. 2017 Aug 24;8:1441 [PMID: 28883826]
  37. Plants (Basel). 2020 Aug 25;9(9): [PMID: 32854449]
  38. Plant Cell. 2019 Sep;31(9):2052-2069 [PMID: 31266850]
  39. Biochem Biophys Res Commun. 2014 Dec 12;455(3-4):312-7 [PMID: 25446093]
  40. New Phytol. 2020 Feb;225(3):1247-1260 [PMID: 31574173]
  41. Plant Cell. 2016 Aug;28(8):1910-25 [PMID: 27436712]
  42. Annu Rev Plant Biol. 2014;65:415-42 [PMID: 24471833]
  43. Genes (Basel). 2019 Aug 07;10(8): [PMID: 31394891]
  44. Plant Mol Biol. 2019 Jul;100(4-5):379-390 [PMID: 30968308]
  45. PLoS One. 2007 May 30;2(5):e471 [PMID: 17534421]
  46. Plant J. 2018 May;94(3):454-468 [PMID: 29436050]
  47. Cell. 2009 Feb 20;136(4):701-18 [PMID: 19239890]
  48. Mol Plant. 2015 Jul;8(7):1053-68 [PMID: 25684655]
  49. Plant Cell. 2013 Oct;25(10):3640-56 [PMID: 24179132]
  50. Plant Biotechnol J. 2020 Dec;18(12):2370-2372 [PMID: 32415890]
  51. Nucleic Acids Res. 2018 Feb 28;46(4):1777-1792 [PMID: 29228330]
  52. Plant Physiol. 2016 Jun;171(2):1427-42 [PMID: 27208272]
  53. FEBS J. 2011 Sep;278(18):3246-55 [PMID: 21794093]
  54. Plant J. 2007 Mar;49(6):1091-107 [PMID: 17319848]
  55. Trends Biotechnol. 2020 Mar;38(3):236-240 [PMID: 31477243]
  56. Plant Physiol. 2008 May;147(1):41-57 [PMID: 18354039]
  57. Annu Rev Biochem. 2015;84:291-323 [PMID: 25784052]
  58. Plant Cell Physiol. 2019 Sep 1;60(9):1897-1905 [PMID: 31093678]
  59. Front Plant Sci. 2018 Aug 15;9:1174 [PMID: 30158945]
  60. PLoS Genet. 2013;9(9):e1003779 [PMID: 24068953]
  61. Plant Physiol. 2022 Jun 27;189(3):1833-1847 [PMID: 35474141]
  62. Plant Cell. 2013 Oct;25(10):3657-83 [PMID: 24179125]
  63. Nucleic Acids Res. 2019 Apr 8;47(6):2716-2726 [PMID: 30793202]
  64. BMC Genomics. 2017 Mar 27;18(1):260 [PMID: 28347276]
  65. Biosci Rep. 2012 Aug;32(4):345-59 [PMID: 22762203]
  66. Int J Mol Sci. 2014 Sep 29;15(10):17541-64 [PMID: 25268622]
  67. Plant Physiol. 2020 Jan;182(1):255-271 [PMID: 31753844]
  68. Plant Physiol Biochem. 2007 Aug;45(8):521-34 [PMID: 17560114]
  69. F1000Res. 2019 May 14;8: [PMID: 31131087]
  70. Nat Rev Mol Cell Biol. 2017 Nov;18(11):655-670 [PMID: 28951565]
  71. Commun Biol. 2021 May 5;4(1):529 [PMID: 33953336]
  72. BMC Genomics. 2014 Jun 04;15:431 [PMID: 24897929]
  73. Nat Biotechnol. 2017 May;35(5):438-440 [PMID: 28244994]
  74. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  75. Trends Plant Sci. 2019 Jun;24(6):496-506 [PMID: 30852095]
  76. Genome Res. 2010 Jan;20(1):45-58 [PMID: 19858364]
  77. Biology (Basel). 2021 Apr 08;10(4): [PMID: 33917813]
  78. Science. 2013 Feb 15;339(6121):823-6 [PMID: 23287722]
  79. Mol Cell. 2005 Mar 4;17(5):613-5 [PMID: 15749011]
  80. Genome Biol. 2019 Apr 30;20(1):73 [PMID: 31036069]
  81. Wiley Interdiscip Rev RNA. 2015 Jan-Feb;6(1):93-110 [PMID: 25155147]
  82. Plant J. 2014 Oct;80(1):93-105 [PMID: 25039836]
  83. Plant Cell. 2006 Jan;18(1):146-58 [PMID: 16339852]
  84. Nat Biotechnol. 2013 Aug;31(8):688-91 [PMID: 23929339]
  85. Genome Biol. 2014 Jan 07;15(1):R1 [PMID: 24393432]
  86. New Phytol. 2021 May;230(3):1273-1287 [PMID: 33453070]
  87. Front Plant Sci. 2018 Nov 15;9:1636 [PMID: 30498503]
  88. Plant Sci. 2019 Jun;283:127-134 [PMID: 31128682]
  89. PeerJ. 2021 Mar 15;9:e11052 [PMID: 33777532]
  90. Trends Plant Sci. 2018 Feb;23(2):140-150 [PMID: 29074233]
  91. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7247-52 [PMID: 21482766]
  92. Plant Cell. 2018 Oct;30(10):2267-2285 [PMID: 30254029]
  93. Genes Dev. 2010 Jun 1;24(11):1073-4 [PMID: 20516191]
  94. Nat Biotechnol. 2013 Aug;31(8):686-8 [PMID: 23929338]
  95. Sci Rep. 2011;1:29 [PMID: 22355548]
  96. Biochimie. 2015 Jun;113:93-9 [PMID: 25882680]
  97. Front Plant Sci. 2020 Mar 24;11:286 [PMID: 32265953]

MeSH Term

Arginine
Genome-Wide Association Study
Oryza
Plant Proteins
Plants
Protein Isoforms
RNA Precursors
RNA Splicing Factors
Serine
Stress, Physiological

Chemicals

Plant Proteins
Protein Isoforms
RNA Precursors
RNA Splicing Factors
Serine
Arginine