Muhammad Rizal Muhammad Asyraf, Agusril Syamsir, Abu Bakar Mohd Supian, Fathoni Usman, Rushdan Ahmad Ilyas, Norizan Mohd Nurazzi, Mohd Nor Faiz Norrrahim, Muhammad Rizal Razman, Sharifah Zarina Syed Zakaria, Shubham Sharma, Zarina Itam, Mohamad Zakir Abd Rashid
In the era of globalisation, decreasing synthetic resources, especially petroleum, have encouraged global communities to apply biomass waste as a substitute material for green technology development. The development of plastic products from lignocellulosic fibre-reinforced composites has been a hot topic among material scientists and engineers due to their abundance, sustainable in nature, and less toxic towards health. For the Malaysian scenario, sugar palm is a plant found in the wild and locally planted in certain areas in Malaysia and Indonesia. Generally, sugar palm can be harvested for traditional foods, fruits, starch sugar (), and alcohol, whereas sugar palm fibre (SPF) is used in conventional products (brushes and brooms). Various researchers are working on the characterisation of fibre and its composites for engineering and packaging products. The main drawback of SPF is its hydrophilic behaviour, which leads to high moisture uptake and inhibits a good bond between the fibre and the matrix. Thus, a solution for this problem is by implementing chemical treatments on the fibre. From the literature review, no comprehensive review paper has been published on the influence of chemical treatment on the mechanical behaviour of SPF-reinforced polymer composites. Thus, the present review examines recent studies on the mechanical properties of sugar palm lignocellulosic fibres with various chemical treatments to evaluate their potential in structural applications.
Polymers (Basel). 2021 Aug 13;13(16):
[PMID:
34451248]
Polymers (Basel). 2021 Apr 07;13(8):
[PMID:
33917177]
Polymers (Basel). 2022 Jan 05;14(1):
[PMID:
35012228]
Polymers (Basel). 2022 Feb 23;14(5):
[PMID:
35267697]
Bioresour Technol. 2008 Apr;99(6):1664-71
[PMID:
17566731]
Materials (Basel). 2019 Jun 29;12(13):
[PMID:
31261926]
Polymers (Basel). 2022 Mar 28;14(7):
[PMID:
35406241]
Polymers (Basel). 2022 Feb 25;14(5):
[PMID:
35267742]
Polymers (Basel). 2021 Feb 19;13(4):
[PMID:
33669491]
Polymers (Basel). 2021 Sep 30;13(19):
[PMID:
34641185]
Polymers (Basel). 2020 Sep 27;12(10):
[PMID:
32992514]
Int J Biol Macromol. 2017 Apr;97:606-615
[PMID:
28109810]
Int J Biol Macromol. 2019 Feb 15;123:379-388
[PMID:
30447353]
Carbohydr Polym. 2013 Jul 1;96(1):1-8
[PMID:
23688447]
Polymers (Basel). 2021 May 23;13(11):
[PMID:
34070960]
Polymers (Basel). 2021 Jun 30;13(13):
[PMID:
34209030]
Int J Biol Macromol. 2020 Mar 1;146:746-755
[PMID:
31730973]
Carbohydr Polym. 2013 Jan 16;91(2):699-710
[PMID:
23121967]
Int J Biol Macromol. 2021 Sep 30;187:624-650
[PMID:
34302869]
Polymers (Basel). 2021 Mar 26;13(7):
[PMID:
33810584]
Polymers (Basel). 2021 Jan 28;13(3):
[PMID:
33525703]
Polymers (Basel). 2021 Apr 25;13(9):
[PMID:
33922885]
Biomacromolecules. 2004 May-Jun;5(3):1078-88
[PMID:
15132702]
Materials (Basel). 2014 Apr 11;7(4):3034-3048
[PMID:
28788605]
Int J Biol Macromol. 2021 Dec 15;193(Pt B):1587-1599
[PMID:
34740691]
Carbohydr Polym. 2018 Dec 15;202:186-202
[PMID:
30286991]
Polymers (Basel). 2022 Mar 25;14(7):
[PMID:
35406203]
Polymers (Basel). 2021 Jun 09;13(12):
[PMID:
34207597]
Polymers (Basel). 2021 Aug 06;13(16):
[PMID:
34451161]
Carbohydr Polym. 2018 Feb 1;181:1038-1051
[PMID:
29253930]
Polymers (Basel). 2020 Jul 15;12(7):
[PMID:
32679865]
Polymers (Basel). 2021 Feb 02;13(3):
[PMID:
33540731]
Polymers (Basel). 2021 Feb 22;13(4):
[PMID:
33671599]
Polymers (Basel). 2022 Jan 03;14(1):
[PMID:
35012203]
Polymers (Basel). 2021 Jan 11;13(2):
[PMID:
33440879]
Materials (Basel). 2022 Mar 24;15(7):
[PMID:
35407737]
Nanomaterials (Basel). 2021 Aug 26;11(9):
[PMID:
34578502]