Regulatory role of miR-146a in corneal epithelial wound healing via its inflammatory targets in human diabetic cornea.

Adam J Poe, Ruchi Shah, Drirh Khare, Mangesh Kulkarni, Hong Phan, Sean Ghiam, Vasu Punj, Alexander V Ljubimov, Mehrnoosh Saghizadeh
Author Information
  1. Adam J Poe: Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  2. Ruchi Shah: Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  3. Drirh Khare: Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  4. Mangesh Kulkarni: Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  5. Hong Phan: Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
  6. Sean Ghiam: Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
  7. Vasu Punj: Department of Medicine, University of Southern California, Los Angeles, CA, USA.
  8. Alexander V Ljubimov: Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
  9. Mehrnoosh Saghizadeh: Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. Electronic address: ghiamm@cshs.org.

Abstract

PURPOSE: MiR-146a upregulated in limbus vs. central cornea and in diabetic vs. non-diabetic limbus has emerged as an important immune and inflammatory signaling mediator in corneal epithelial wound healing. Our aim was to investigate the potential inflammation-related miR-146a target genes and their roles in normal and impaired diabetic corneal epithelial wound healing.
METHODS: Our previous data from RNA-seq combined with quantitative proteomics of limbal epithelial cells (LECs) transfected with miR-146a mimic vs. mimic control were analyzed. Western blot and immunostaining were used to confirm the expression of miR-146a inflammatory target proteins in LECs and organ-cultured corneas. Luminex assay was performed on conditioned media at 6- and 20-h post-wounding in miR-146a mimic/inhibitor transfected normal and diabetic cultured LECs.
RESULTS: Overexpression of miR-146a decreased the expression of pro-inflammatory TRAF6 and IRAK1 and downstream target NF-κB after challenge with lipopolysaccharide (LPS) or wounding. Additionally, miR-146a overexpression suppressed the production of downstream inflammatory mediators including secreted cytokines IL-1α, IL-1β, IL-6 and IL-8, and chemokines CXCL1, CXCL2 and CXCL5. These cytokines and chemokines were upregulated in normal but not in diabetic LEC during wounding. Furthermore, we achieved normalized levels of altered secreted cytokines and chemokines in diabetic wounded LEC via specific inhibition of miR-146a.
CONCLUSION: Our study documented significant impact of miR-146a on the expression of inflammatory mediators at the mRNA and protein levels during acute inflammatory responses and wound healing, providing insights into the regulatory role of miR-146a in corneal epithelial homeostasis in normal and diabetic conditions.

Keywords

References

  1. Oncol Lett. 2019 Nov;18(5):5033-5042 [PMID: 31612014]
  2. Nat Cell Biol. 2016 Feb;18(2):168-80 [PMID: 26689676]
  3. Cells. 2020 Sep 26;9(10): [PMID: 32993109]
  4. Curr Neuropharmacol. 2016;14(2):155-64 [PMID: 26639457]
  5. BMJ Open Diabetes Res Care. 2019 Nov 27;7(1):e000779 [PMID: 31803484]
  6. Brain Res Bull. 2010 Feb 15;81(2-3):262-72 [PMID: 19828126]
  7. J Cell Sci. 2017 Mar 15;130(6):1021-1025 [PMID: 28202689]
  8. Exp Lung Res. 2013 Sep;39(7):275-82 [PMID: 23848342]
  9. BMC Nephrol. 2014 Sep 02;15:142 [PMID: 25182190]
  10. Br J Cancer. 2016 Dec 6;115(12):1548-1554 [PMID: 27832663]
  11. PLoS Genet. 2019 Feb 15;15(2):e1007970 [PMID: 30768595]
  12. Invest Ophthalmol Vis Sci. 2017 Mar 1;58(3):1646-1655 [PMID: 28297724]
  13. J Biomed Sci. 2017 Aug 24;24(1):60 [PMID: 28836970]
  14. Front Pharmacol. 2018 May 14;9:478 [PMID: 29867484]
  15. Ocul Surf. 2003 Apr;1(2):53-65 [PMID: 17075633]
  16. PLoS One. 2014 Dec 09;9(12):e114692 [PMID: 25490205]
  17. Stem Cells Int. 2018 May 8;2018:8620172 [PMID: 29853920]
  18. J Biochem. 2020 Jan 1;167(1):41-48 [PMID: 31598678]
  19. Cell. 2003 Apr 4;113(1):25-36 [PMID: 12679032]
  20. Exp Hematol. 2011 Feb;39(2):167-178.e4 [PMID: 20933052]
  21. Invest Ophthalmol Vis Sci. 2014 Jul 01;55(8):4944-51 [PMID: 24985472]
  22. Exp Eye Res. 2017 Jan;154:22-29 [PMID: 27818315]
  23. Exp Eye Res. 2021 Mar;204:108455 [PMID: 33485845]
  24. Cell Physiol Biochem. 2017;41(4):1285-1297 [PMID: 28278511]
  25. Front Bioeng Biotechnol. 2019 Jun 11;7:135 [PMID: 31245365]
  26. J Immunol. 2015 Jul 15;195(2):672-82 [PMID: 26048146]
  27. Int J Mol Sci. 2016 Jul 07;17(7): [PMID: 27399683]
  28. J Inflamm (Lond). 2013 May 16;10(1):20 [PMID: 23680172]
  29. Cell Mol Immunol. 2011 Sep;8(5):388-403 [PMID: 21822296]
  30. Am J Pathol. 2007 Apr;170(4):1178-91 [PMID: 17392158]
  31. Front Cell Dev Biol. 2021 Mar 04;9:634837 [PMID: 33748121]
  32. Ocul Surf. 2021 Jul;21:19-26 [PMID: 33894397]
  33. Ann Transl Med. 2021 Sep;9(18):1433 [PMID: 34733985]
  34. Stem Cells. 2012 Feb;30(2):100-7 [PMID: 22131201]
  35. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):16961-6 [PMID: 16287976]
  36. Front Immunol. 2014 Nov 21;5:578 [PMID: 25484882]
  37. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21179-84 [PMID: 19965369]
  38. N Engl J Med. 2010 Jul 8;363(2):147-55 [PMID: 20573916]
  39. PLoS One. 2013 Dec 20;8(12):e84425 [PMID: 24376808]
  40. PLoS One. 2011;6(6):e21180 [PMID: 21695050]
  41. Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4034-9 [PMID: 16495412]
  42. Front Immunol. 2017 Jan 16;7:670 [PMID: 28138326]
  43. Int J Mol Sci. 2018 Oct 18;19(10): [PMID: 30340330]
  44. Prog Retin Eye Res. 2001 Sep;20(5):625-37 [PMID: 11470453]
  45. Ocul Surf. 2016 Apr;14(2):100-12 [PMID: 26769483]
  46. J Immunol. 2009 Aug 1;183(3):2150-8 [PMID: 19596990]
  47. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12481-6 [PMID: 16885212]
  48. Arch Ophthalmol. 2003 Jun;121(6):825-31 [PMID: 12796254]
  49. Biomed Pharmacother. 2020 Jun;126:110099 [PMID: 32179200]
  50. Invest Ophthalmol Vis Sci. 2010 Jun;51(6):2976-85 [PMID: 20053980]
  51. Invest Ophthalmol Vis Sci. 2010 Apr;51(4):1970-80 [PMID: 19933191]

Grants

  1. R01 EY013431/NEI NIH HHS
  2. R01 EY025377/NEI NIH HHS
  3. R01 EY029829/NEI NIH HHS
  4. R01 EY031377/NEI NIH HHS

MeSH Term

Cornea
Cytokines
Diabetes Mellitus
Humans
Inflammation Mediators
MicroRNAs
Wound Healing

Chemicals

Cytokines
Inflammation Mediators
MIRN146 microRNA, human
MicroRNAs