Visualization of learning-induced synaptic plasticity in output neurons of the Drosophila mushroom body γ-lobe.

Clare E Hancock, Vahid Rostami, El Yazid Rachad, Stephan H Deimel, Martin P Nawrot, André Fiala
Author Information
  1. Clare E Hancock: Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
  2. Vahid Rostami: Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Zülpicherstraße 47b, 50674, Cologne, Germany.
  3. El Yazid Rachad: Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
  4. Stephan H Deimel: Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
  5. Martin P Nawrot: Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Zülpicherstraße 47b, 50674, Cologne, Germany.
  6. André Fiala: Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany. afiala@biologie.uni-goettingen.de.

Abstract

By learning, through experience, which stimuli coincide with dangers, it is possible to predict outcomes and act pre-emptively to ensure survival. In insects, this process is localized to the mushroom body (MB), the circuitry of which facilitates the coincident detection of sensory stimuli and punishing or rewarding cues and, downstream, the execution of appropriate learned behaviors. Here, we focused our attention on the mushroom body output neurons (MBONs) of the γ-lobes that act as downstream synaptic partners of the MB γ-Kenyon cells (KCs) to ask how the output of the MB γ-lobe is shaped by olfactory associative conditioning, distinguishing this from non-associative stimulus exposure effects, and without the influence of downstream modulation. This was achieved by employing a subcellularly localized calcium sensor to specifically monitor activity at MBON postsynaptic sites. Therein, we identified a robust associative modulation within only one MBON postsynaptic compartment (MBON-γ1pedc > α/β), which displayed a suppressed postsynaptic response to an aversively paired odor. While this MBON did not undergo non-associative modulation, the reverse was true across the remainder of the γ-lobe, where general odor-evoked adaptation was observed, but no conditioned odor-specific modulation. In conclusion, associative synaptic plasticity underlying aversive olfactory learning is localized to one distinct synaptic γKC-to-γMBON connection.

References

eNeuro. 2020 Apr 10;7(2): [PMID: 32132095]
Front Behav Neurosci. 2014 May 15;8:174 [PMID: 24860455]
Curr Biol. 2005 Nov 8;15(21):1953-60 [PMID: 16271874]
Nat Commun. 2021 May 7;12(1):2569 [PMID: 33963189]
Curr Biol. 2014 Apr 14;24(8):822-31 [PMID: 24684937]
Neuron. 2015 Apr 22;86(2):417-27 [PMID: 25864636]
Science. 2000 Apr 28;288(5466):672-5 [PMID: 10784450]
Science. 1994 Feb 4;263(5147):692-5 [PMID: 8303280]
J Neurosci. 1998 Oct 15;18(20):8534-8 [PMID: 9763495]
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 02;369(1633):20130288 [PMID: 24298167]
Curr Biol. 2009 Aug 25;19(16):1341-50 [PMID: 19646879]
Elife. 2020 Dec 14;9: [PMID: 33315010]
Cell Rep. 2018 Oct 16;25(3):651-662.e5 [PMID: 30332645]
Nature. 2017 Aug 9;548(7666):175-182 [PMID: 28796202]
Elife. 2014 Dec 23;3:e04577 [PMID: 25535793]
Science. 2002 Jul 19;297(5580):359-65 [PMID: 12130775]
Curr Biol. 2013 Dec 16;23(24):2519-27 [PMID: 24291093]
Nat Methods. 2009 Dec;6(12):875-81 [PMID: 19898485]
J Vis Exp. 2019 Oct 8;(152): [PMID: 31657798]
J Neurosci. 2011 Aug 17;31(33):11772-85 [PMID: 21849538]
J Neurogenet. 1985 Feb;2(1):1-30 [PMID: 4020527]
J Comp Physiol A. 1985 Sep;157(2):263-77 [PMID: 3939242]
Neuron. 2020 Jun 17;106(6):963-976.e4 [PMID: 32268119]
Cell. 2015 Dec 17;163(7):1742-55 [PMID: 26687359]
Nature. 2013 Jul 18;499(7458):295-300 [PMID: 23868258]
Cell Rep. 2015 Mar 31;10(12):2083-95 [PMID: 25818295]
Elife. 2017 Jul 18;6: [PMID: 28718765]
Curr Opin Neurobiol. 2004 Dec;14(6):737-44 [PMID: 15582377]
Science. 2001 Nov 2;294(5544):1115-7 [PMID: 11691997]
Nature. 2001 May 24;411(6836):476-80 [PMID: 11373680]
eNeuro. 2021 Jun 16;8(3): [PMID: 33785523]
J Neurosci. 2009 Nov 4;29(44):13870-82 [PMID: 19889998]
Neuron. 2015 Dec 2;88(5):985-998 [PMID: 26637800]
Proc Natl Acad Sci U S A. 1983 Mar;80(5):1482-6 [PMID: 6572401]
IEEE Trans Image Process. 1998;7(1):27-41 [PMID: 18267377]
Annu Rev Neurosci. 2000;23:649-711 [PMID: 10845078]
Ann Neurosci. 2010 Jul;17(3):136-41 [PMID: 25205891]
Cell. 2018 Oct 18;175(3):709-722.e15 [PMID: 30245010]
Science. 2003 Dec 5;302(5651):1765-8 [PMID: 14657498]
Curr Biol. 2012 Apr 10;22(7):608-14 [PMID: 22425153]
Nat Rev Neurosci. 2003 Apr;4(4):266-75 [PMID: 12671643]
Nature. 2015 Oct 8;526(7572):258-62 [PMID: 26416731]
Elife. 2016 Jul 21;5: [PMID: 27441388]
Annu Rev Neurosci. 2020 Jul 8;43:95-117 [PMID: 32075520]
Elife. 2014 Dec 23;3:e04580 [PMID: 25535794]
Neuron. 2016 Jun 1;90(5):1086-99 [PMID: 27210550]

MeSH Term

Animals
Drosophila
Drosophila melanogaster
Learning
Mushroom Bodies
Neuronal Plasticity
Neurons
Odorants
Smell

Word Cloud

Similar Articles

Cited By