The NALCN channel regulates metastasis and nonmalignant cell dissemination.

Eric P Rahrmann, David Shorthouse, Amir Jassim, Linda P Hu, Mariaestela Ortiz, Betania Mahler-Araujo, Peter Vogel, Marta Paez-Ribes, Atefeh Fatemi, Gregory J Hannon, Radhika Iyer, Jay A Blundon, Filipe C Lourenço, Jonathan Kay, Rosalynn M Nazarian, Benjamin A Hall, Stanislav S Zakharenko, Douglas J Winton, Liqin Zhu, Richard J Gilbertson
Author Information
  1. Eric P Rahrmann: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
  2. David Shorthouse: Department of Medical Physics and Biomedical Engineering, University College London, London, UK. ORCID
  3. Amir Jassim: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
  4. Linda P Hu: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
  5. Mariaestela Ortiz: Molecular Pharmacology Lab, Organoid Models Research and Biology, National Cancer Institute, Leidos Biomedical Research, Frederick, MD, USA.
  6. Betania Mahler-Araujo: Wellcome-MRC Institute of Metabolic Science, Histopathology Core, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
  7. Peter Vogel: Veterinary Pathology Core Laboratory, St Jude Children's Research Hospital, Memphis, TN, USA. ORCID
  8. Marta Paez-Ribes: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
  9. Atefeh Fatemi: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
  10. Gregory J Hannon: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. ORCID
  11. Radhika Iyer: Texas Children's Cancer and Hematology Centers, Houston, TX, USA.
  12. Jay A Blundon: Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
  13. Filipe C Lourenço: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. ORCID
  14. Jonathan Kay: Departments of Medicine and of Population and Quantitative Health Sciences, University of Massachusetts Medical School and UMass Memorial Medical Center, Worcester, MA, USA. ORCID
  15. Rosalynn M Nazarian: Massachusetts General Hospital, Pathology Service, Dermatopathology Unit, Boston, MA, USA.
  16. Benjamin A Hall: Department of Medical Physics and Biomedical Engineering, University College London, London, UK. ORCID
  17. Stanislav S Zakharenko: Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA. ORCID
  18. Douglas J Winton: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. ORCID
  19. Liqin Zhu: Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA. ORCID
  20. Richard J Gilbertson: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. Richard.Gilbertson@cruk.cam.ac.uk. ORCID

Abstract

We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.

References

Front Cell Neurosci. 2014 May 20;8:132 [PMID: 24904279]
Nat Biotechnol. 2020 Jun;38(6):675-678 [PMID: 32444850]
Mol Cancer Ther. 2020 Aug;19(8):1751-1760 [PMID: 32499301]
Structure. 2015 Jul 7;23(7):1350-61 [PMID: 26073602]
Nat Genet. 1999 Sep;23(1):99-103 [PMID: 10471508]
Nat Commun. 2017 Feb 09;8:14344 [PMID: 28181495]
Nat Rev Clin Oncol. 2019 Jul;16(7):409-424 [PMID: 30796368]
Cell Rep. 2014 Sep 25;8(6):1905-1918 [PMID: 25242334]
Front Oncol. 2022 Mar 14;12:846917 [PMID: 35359398]
Nat Med. 2021 Jan;27(1):34-44 [PMID: 33442008]
Nucleic Acids Res. 2019 Jan 8;47(D1):D390-D397 [PMID: 30418645]
J Chem Theory Comput. 2008 May;4(5):819-34 [PMID: 26621095]
J Mol Graph. 1996 Dec;14(6):354-60, 376 [PMID: 9195488]
Biochim Biophys Acta Mol Cell Res. 2020 Dec;1867(12):118833 [PMID: 32860837]
Nature. 2016 Sep 1;537(7618):102-106 [PMID: 27556950]
Nature. 2007 Feb 8;445(7128):661-5 [PMID: 17251932]
Science. 2018 Nov 23;362(6417):911-917 [PMID: 30337457]
Nature. 2020 Nov;587(7833):313-318 [PMID: 32698188]
Nat Neurosci. 2010 Jan;13(1):133-40 [PMID: 20023653]
PLoS Comput Biol. 2018 Jan 2;14(1):e1005911 [PMID: 29293502]
Cancer Cell. 2019 Sep 16;36(3):319-336.e7 [PMID: 31526760]
Nat Rev Cancer. 2009 Apr;9(4):302-12 [PMID: 19308069]
Nat Med. 2020 Feb;26(2):259-269 [PMID: 32042191]
Nature. 2016 Jan 21;529(7586):298-306 [PMID: 26791720]
Dev Cell. 2020 Aug 24;54(4):455-470.e5 [PMID: 32553121]
Science. 2015 May 22;348(6237):880-6 [PMID: 25999502]
Front Oncol. 2020 Jan 17;9:1546 [PMID: 32010631]
Neurology. 2016 Sep 13;87(11):1131-9 [PMID: 27558372]
Nat Cancer. 2020 Jan;1(1):28-45 [PMID: 32656539]
Annu Rev Biochem. 2016 Jun 2;85:375-404 [PMID: 27145840]
Genesis. 2004 Jul;39(3):186-93 [PMID: 15282745]
Nature. 2009 Jan 29;457(7229):603-7 [PMID: 19092805]
Science. 2020 Mar 27;367(6485):1468-1473 [PMID: 32029688]
Neuron. 2011 Dec 22;72(6):899-911 [PMID: 22196327]
Cell. 2007 Apr 20;129(2):371-83 [PMID: 17448995]
Cancer Med. 2019 Sep;8(12):5574-5576 [PMID: 31397113]
Sci Rep. 2019 May 10;9(1):7234 [PMID: 31076617]
Cell. 2016 Aug 25;166(5):1132-1146.e7 [PMID: 27565343]
Nature. 2009 Feb 5;457(7230):741-4 [PMID: 19092807]
Nature. 2012 Aug 2;488(7409):43-8 [PMID: 22722829]
Cell Metab. 2013 Jul 2;18(1):9-20 [PMID: 23823474]
Annu Rev Med. 2016;67:273-91 [PMID: 26768242]
Genes Dev. 2000 Apr 15;14(8):994-1004 [PMID: 10783170]
Nature. 2018 Apr;556(7702):463-468 [PMID: 29670281]
Am J Pathol. 2012 Dec;181(6):1941-52 [PMID: 23041060]
Science. 2015 Sep 18;349(6254):1351-6 [PMID: 26383955]
Cell. 2022 Feb 3;185(3):563-575.e11 [PMID: 35120664]
Sci Adv. 2020 Apr 24;6(17):eaaz3154 [PMID: 32494638]
Nat Genet. 2013 Oct;45(10):1113-20 [PMID: 24071849]
Biochim Biophys Acta. 2009 Jun;1793(6):1096-104 [PMID: 19250948]
Sci Signal. 2013 Apr 02;6(269):pl1 [PMID: 23550210]
Genes Dev. 2001 Dec 15;15(24):3243-8 [PMID: 11751630]
Cancer Res. 2010 Sep 1;70(17):6957-67 [PMID: 20651255]
Cancer Cell. 2003 Dec;4(6):437-50 [PMID: 14706336]
Nat Rev Cancer. 2008 May;8(5):329-40 [PMID: 18404148]
Cell Stem Cell. 2010 Jan 8;6(1):25-36 [PMID: 20085740]
Cell. 2017 Nov 16;171(5):1029-1041.e21 [PMID: 29056346]

Grants

  1. MR/S000216/1/Medical Research Council
  2. MR/S000216/2/Medical Research Council
  3. R56 MH097742/NIMH NIH HHS
  4. 22492/Cancer Research UK
  5. R01 MH097742/NIMH NIH HHS
  6. P30 CA021765/NCI NIH HHS
  7. R01 DC012833/NIDCD NIH HHS

MeSH Term

Humans
Mice
Animals
Neoplasms
Ion Channels
Membrane Proteins

Chemicals

NALCN protein, human
Ion Channels
Membrane Proteins
NALCN protein, mouse