The NALCN channel regulates metastasis and nonmalignant cell dissemination.
Eric P Rahrmann, David Shorthouse, Amir Jassim, Linda P Hu, Mariaestela Ortiz, Betania Mahler-Araujo, Peter Vogel, Marta Paez-Ribes, Atefeh Fatemi, Gregory J Hannon, Radhika Iyer, Jay A Blundon, Filipe C Lourenço, Jonathan Kay, Rosalynn M Nazarian, Benjamin A Hall, Stanislav S Zakharenko, Douglas J Winton, Liqin Zhu, Richard J Gilbertson
Author Information
Eric P Rahrmann: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
David Shorthouse: Department of Medical Physics and Biomedical Engineering, University College London, London, UK. ORCID
Amir Jassim: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
Linda P Hu: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
Mariaestela Ortiz: Molecular Pharmacology Lab, Organoid Models Research and Biology, National Cancer Institute, Leidos Biomedical Research, Frederick, MD, USA.
Betania Mahler-Araujo: Wellcome-MRC Institute of Metabolic Science, Histopathology Core, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
Peter Vogel: Veterinary Pathology Core Laboratory, St Jude Children's Research Hospital, Memphis, TN, USA. ORCID
Marta Paez-Ribes: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
Atefeh Fatemi: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
Gregory J Hannon: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. ORCID
Radhika Iyer: Texas Children's Cancer and Hematology Centers, Houston, TX, USA.
Jay A Blundon: Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
Filipe C Lourenço: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. ORCID
Jonathan Kay: Departments of Medicine and of Population and Quantitative Health Sciences, University of Massachusetts Medical School and UMass Memorial Medical Center, Worcester, MA, USA. ORCID
Rosalynn M Nazarian: Massachusetts General Hospital, Pathology Service, Dermatopathology Unit, Boston, MA, USA.
Benjamin A Hall: Department of Medical Physics and Biomedical Engineering, University College London, London, UK. ORCID
Stanislav S Zakharenko: Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA. ORCID
Douglas J Winton: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. ORCID
Liqin Zhu: Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA. ORCID
Richard J Gilbertson: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. Richard.Gilbertson@cruk.cam.ac.uk. ORCID
We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.
References
Dillekås, H., Rogers, M. S. & Straume, O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 8, 5574–5576 (2019).
[DOI: 10.1002/cam4.2474]
Ganesh, K. & Massagué, J. Targeting metastatic cancer. Nat. Med. 27, 34–44 (2021).
[DOI: 10.1038/s41591-020-01195-4]
Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).
[DOI: 10.1038/nature17038]
House, C. D. et al. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res. 70, 6957–6967 (2010).
[DOI: 10.1158/0008-5472.CAN-10-1169]
Sheth, M. & Esfandiari, L. Bioelectric dysregulation in cancer initiation, promotion, and progression. Front. Oncol. 12, 846917 (2022).
[DOI: 10.3389/fonc.2022.846917]
Wang, T. et al. The calcium pump PMCA4 prevents epithelial–mesenchymal transition by inhibiting NFATc1-ZEB1 pathway in gastric cancer. Biochim. Biophys. Acta Mol. Cell. Res. 1867, 118833 (2020).
[DOI: 10.1016/j.bbamcr.2020.118833]
Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022).
[DOI: 10.1016/j.cell.2022.01.003]
Ganesh, K. et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nat. Cancer 1, 28–45 (2020).
[DOI: 10.1038/s43018-019-0006-x]
Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).
[DOI: 10.1038/s41591-019-0750-6]
Pastushenko, I. et al. Identification of the tumour transition states occurring during EMT. Nature 556, 463–468 (2018).
[DOI: 10.1038/s41586-018-0040-3]
Chua, H. C., Wulf, M., Weidling, C., Rasmussen, L. P. & Pless, S. A. The NALCN channel complex is voltage sensitive and directly modulated by extracellular calcium. Sci. Adv. 6, eaaz3154 (2020).
[DOI: 10.1126/sciadv.aaz3154]
Kschonsak, M. et al. Structure of the human sodium leak channel NALCN. Nature 587, 313–318 (2020).
[DOI: 10.1038/s41586-020-2570-8]
Lu, B. et al. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129, 371–383 (2007).
[DOI: 10.1016/j.cell.2007.02.041]
Bend, E. G. et al. NALCN channelopathies: distinguishing gain-of-function and loss-of-function mutations. Neurology 87, 1131–1139 (2016).
[DOI: 10.1212/WNL.0000000000003095]
Zhu, L. et al. Multi-organ mapping of cancer risk. Cell 166, 1132–1146 (2016).
[DOI: 10.1016/j.cell.2016.07.045]
Ren, D. Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 72, 899–911 (2011).
[DOI: 10.1016/j.neuron.2011.12.007]
Cochet-Bissuel, M., Lory, P. & Monteil, A. The sodium leak channel, NALCN, in health and disease. Front. Cell. Neurosci. 8, 132 (2014).
[DOI: 10.3389/fncel.2014.00132]
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 (2017).
[DOI: 10.1016/j.cell.2017.09.042]
Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
[DOI: 10.1038/ng.2764]
Joerger, A. C. & Fersht, A. R. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu. Rev. Biochem. 85, 375–404 (2016).
[DOI: 10.1146/annurev-biochem-060815-014710]
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. OLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).
[DOI: 10.1016/S0263-7855(97)00009-X]
Newport, T. D., Sansom, M. S. P. & Stansfeld, P. J. The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res. 47, D390–D397 (2019).
[DOI: 10.1093/nar/gky1047]
Stansfeld, P. J. et al. MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23, 1350–1361 (2015).
[DOI: 10.1016/j.str.2015.05.006]
Koplev, S., Lin, K., Dohlman, A. B. & Ma’ayan, A. Integration of pan-cancer transcriptomics with RPPA proteomics reveals mechanisms of epithelial–mesenchymal transition. PLoS Comput. Biol. 14, e1005911 (2018).
[DOI: 10.1371/journal.pcbi.1005911]
El Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).
[DOI: 10.1002/gene.20042]
Jackstadt, R. et al. Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36, 319–336 (2019).
[DOI: 10.1016/j.ccell.2019.08.003]
Magnuson, M. A. & Osipovich, A. B. Pancreas-specific Cre driver lines and considerations for their prudent use. Cell Metab. 18, 9–20 (2013).
[DOI: 10.1016/j.cmet.2013.06.011]
Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).
[DOI: 10.1016/S1535-6108(03)00309-X]
Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607 (2009).
[DOI: 10.1038/nature07589]
Pantel, K. & Alix-Panabières, C. Liquid biopsy and minimal residual disease — latest advances and implications for cure. Nat. Rev. Clin. Oncol. 16, 409–424 (2019).
[DOI: 10.1038/s41571-019-0187-3]
Miyamoto, D. T. et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349, 1351–1356 (2015).
[DOI: 10.1126/science.aab0917]
Ting, D. T. et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014).
[DOI: 10.1016/j.celrep.2014.08.029]
Zheng, Y. et al. Expression of β-globin by cancer cells promotes cell survival during blood-borne dissemination. Nat. Commun. 8, 14344 (2017).
[DOI: 10.1038/ncomms14344]
Ebright, R. Y. et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 367, 1468–1473 (2020).
[DOI: 10.1126/science.aay0939]
Jordan, N. V. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537, 102–106 (2016).
[DOI: 10.1038/nature19328]
Dimitrov-Markov, S. et al. Discovery of new targets to control metastasis in pancreatic cancer by single-cell transcriptomics analysis of circulating tumor cells. Mol. Cancer Ther. 19, 1751–1760 (2020).
[DOI: 10.1158/1535-7163.MCT-19-1166]
Wagner, B. et al. Nephrogenic systemic fibrosis: evidence for oxidative stress and bone marrow-derived fibrocytes in skin, liver, and heart lesions using a 5/6 nephrectomy rodent model. Am. J. Pathol. 181, 1941–1952 (2012).
[DOI: 10.1016/j.ajpath.2012.08.026]
Habib, A. R. et al. A systematic review of the clinical efficacy and safety of CFTR ModulatORS IN CYstic fibrosis. Sci. Rep. 9, 7234 (2019).
[DOI: 10.1038/s41598-019-43652-2]
Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008).
[DOI: 10.1038/nrc2375]
Kolling, S. et al. ‘Metastatic cancer of unknown primary’ or ‘primary metastatic cancer’? Front. Oncol. 9, 1546 (2020).
[DOI: 10.3389/fonc.2019.01546]
Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).
[DOI: 10.1126/science.aaa6806]
Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).
[DOI: 10.1126/science.aau3879]
Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).
[DOI: 10.1038/nrc2627]
Barbado, M., Fablet, K., Ronjat, M. & De Waard, M. Gene regulation by voltage-dependent calcium channels. Biochim. Biophys. Acta 1793, 1096–1104 (2009).
[DOI: 10.1016/j.bbamcr.2009.02.004]
Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).
[DOI: 10.1016/j.stem.2009.11.013]
Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).
[DOI: 10.1038/nature11213]
Lu, B. et al. Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature 457, 741–744 (2009).
[DOI: 10.1038/nature07579]
Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).
[DOI: 10.1038/12703]
Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).
[DOI: 10.1038/nature05541]
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
[DOI: 10.1038/nn.2467]
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).
[DOI: 10.1101/gad.943001]
Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).
[DOI: 10.1101/gad.14.8.994]
Patmore, D. M. et al. DDX3X suppresses the susceptibility of hindbrain lineages to medulloblastoma. Dev. Cell 54, 455–470.e5 (2020).
[DOI: 10.1016/j.devcel.2020.05.027]
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).
[DOI: 10.1126/scisignal.2004088]
Goldman, M. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020).
[DOI: 10.1038/s41587-020-0546-8]
Monticelli, L. et al. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008).
[DOI: 10.1021/ct700324x]