Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates.

Boye Liu, Nana Li, Fusheng Chen, Jingsi Zhang, Xiaorui Sun, Lei Xu, Fang Fang
Author Information
  1. Boye Liu: College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China. ORCID
  2. Nana Li: College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China. ORCID
  3. Fusheng Chen: College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China. ORCID
  4. Jingsi Zhang: College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210014, People's Republic of China. ORCID
  5. Xiaorui Sun: College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China. ORCID
  6. Lei Xu: Nestlé Product Technology Center, Nestlé Health Science, Bridgewater, NJ, 08807, USA.
  7. Fang Fang: Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA. ORCID

Abstract

Recent scientific evidence indicates that protein hydrolysates contain bioactive peptides that have potential benefits for human health. However, the bitter-tasting hydrophobic peptides in protein hydrolysates negatively affect the sensory quality of resulting products and limit their utilization in food and pharmaceutical industries. The approaches to reduce, mask, and remove bitter taste from protein hydrolysates have been extensively reported. This review paper focuses on the advances in the knowledge regarding the structure-bitterness relationship of peptides, the release mechanism of bitter peptides, and the debittering methods for protein hydrolysates. Bitter tastes generating with enzymatic hydrolysis of protein is influenced by the type, concentration, and bitter taste threshold of bitterness peptides. A "bell-shaped curve" is used to describe the relationship between the bitterness intensity of the hydrolysates and the degree of hydrolysis. The bitter receptor perceives bitter potencies of bitter peptides by the hydrophobicity recognition zone. The intensity of bitterness is influenced by hydrophobic and electronic properties of amino acids and the critical spatial structure of peptides. Compared to physicochemical debittering (i.e., selective separation, masking of bitter taste, encapsulation, Maillard reaction, and encapsulation) and other biological debittering (i.e., enzymatic hydrolysis, enzymatic deamidation, plastein reaction), enzymatic hydrolysis is a promising debittering approach as it combines protein hydrolyzation and debittering into a one-step process, but more work should be done to advance the knowledge on debittering mechanism of enzymatic hydrolysis and screening of suitable proteases. Further study can focus on combining physicochemical and biological approaches to achieve high debittering efficiency and produce high-quality products.

Keywords

References

  1. Alim, A., Song, H., Yang, C., Liu, Y., Zou, T., Zhang, Y., & Zhang, S. (2019). Changes in the perception of bitter constituents in thermally treated yeast extract. Journal of the Science of Food and Agriculture, 99, 4651-4658. https://doi.org/10.1002/jsfa.9705
  2. Bertelsen, A. S., Laursen, A., Knudsen, T. A., Moller, S., & Kidmose, U. (2018). Bitter taste masking of enzyme-treated soy protein in water and bread. Journal of the Science of Food and Agriculture, 98(10), 3860-3869. https://doi.org/10.1002/jsfa.8903
  3. Brownsell, V. L., Williams, R. J. H., & Andrews, A. T. (2001). Application of the plastein reaction to mycoprotein II. Plastein properties. Food Chemistry, 72(3), 337-346. https://doi.org/10.1016/S0308-8146(00)00234-X
  4. Bu, Y., Zhu, L., Xu, W., Zhu, W., Liu, H., Li, J., & Li, X. (2020). Physicochemical and flavour characteristics of Maillard reaction products derived from Aloididae aloidi muscle enzymatic hydrolysates coupled with high-pressure processing. International Journal of Food Science and Technology, 56(4), 1766-1776. https://doi.org/10.1111/ijfs.14802
  5. Chakrabarti, S., Guha, S., & Majumder, K. (2018). Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients, 10(11), 1738. https://doi.org/10.3390/nu10111738
  6. Chandrashekar, J., Mueller, K. L., Hoon, M. A., Adler, E., Feng, L., Guo, W., Zuker, C. S., & Ryba, N. J. P. (2000). T2Rs function as bitter taste receptors. Cell, 100(6), 703-711. https://doi.org/10.1016/S0092-8674(00)80706-0
  7. Charoenkwan, P., Nantasenamat, C., Hasan, M. M., Moni, M. A., Lio, P., & Shoombuatong, W. (2021). iBitter-Fuse: A novel sequence-based bitter peptide predictor by fusing multi-view features. International Journal of Molecular Science, 22(16). https://doi.org/10.3390/ijms22168958
  8. Charoenkwan, P., Yana, J., Schaduangrat, N., Nantasenamat, C., Hasan, M. M., & Shoombuatong, W. (2020). iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics, 112(4), 2813-2822. https://doi.org/10.1016/j.ygeno.2020.03.019
  9. Cheison, S. C., Wang, Z., & Xu, S. - Y. (2007). Use of macroporous adsorption resin for simultaneous desalting and debittering of whey protein hydrolysates. International Journal of Food Science & Technology, 42(10), 1228-1239. https://doi.org/10.1111/j.1365-2621.2006.01461.x
  10. Cheung, L. K. Y., Aluko, R. E., Cliff, M. A., & Li-Chan, E. C. Y. (2015). Effects of exopeptidase treatment on antihypertensive activity and taste attributes of enzymatic whey protein hydrolysates. Journal of Functional Foods, 13, 262-275. https://doi.org/10.1016/j.jff.2014.12.036
  11. Chiang, J. H., Eyres, G. T., Silcock, P. J., Hardacre, A. K., & Parker, M. E. (2019). Changes in the physicochemical properties and flavour compounds of beef bone hydrolysates after Maillard reaction. Food Research International, 123, 642-649. https://doi.org/10.1016/j.foodres.2019.05.024
  12. Cho, M. J. (2000). Characterization of bitter peptides from soy protein hydrolysates. (Doctor). University of Missouri-Columbia.
  13. Cho, M. J., Unklesbay, N., Hsieh, F. H., & Clarke, A. D. (2004). Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry, 52(19), 5895-5901. https://doi.org/10.1021/jf0495035
  14. Daher, D., Deracinois, B., Courcoux, P., Baniel, A., Chollet, S., Froidevaux, R., & Flahaut, C. (2021). Sensopeptidomic kinetic approach combined with decision trees and random forests to study the bitterness during enzymatic hydrolysis kinetics of micellar caseins. Foods, 10(6), . https://doi.org/10.3390/foods10061312
  15. de Souza Simoes, L., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos, O. L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23-45. https://doi.org/10.1016/j.cis.2017.02.010
  16. Drapala, K. P., Auty, M. A. E., Mulvihill, D. M., & O'Mahony, J. A. (2016). Performance of whey protein hydrolysate-maltodextrin conjugates as emulsifiers in model infant formula emulsions. International Dairy Journal, 62, 76-83. https://doi.org/10.1016/j.idairyj.2016.03.006
  17. Ewert, J., Claaßen, W., Stressler, T., & Fischer, L. (2019). An innovative two-step enzymatic membrane bioreactor approach for the continuous production of antioxidative casein hydrolysates with reduced bitterness. Biochemical Engineering Journal, 150, 107261. https://doi.org/10.1016/j.bej.2019.107261
  18. FitzGerald, R. J., & O'Cuinn, G. (2006). Enzymatic debittering of food protein hydrolysates. Biotechnology Advances, 24(2), 234-237. https://doi.org/10.1016/j.biotechadv.2005.11.002
  19. Fu, Y., Chen, J., Bak, K. H, & Lametsch, R. (2019). Valorisation of protein hydrolysates from animal by-products_ perspectives on bitter taste and debittering methods: A review. International Journal of Food Science and Technology, 54(4), 978-986. https://doi.org/10.1111/ijfs.14037
  20. Fu, Y., Liu, J., Zhang, W., Waehrens, S. S., Tostesen, M., Hansen, E. T., Bredie, W. L. P., & Lametsch, R. (2020). Exopeptidase treatment combined with Maillard reaction modification of protein hydrolysates derived from porcine muscle and plasma: Structure-taste relationship. Food Chemistry, 306, 125613. https://doi.org/10.1016/j.foodchem.2019.125613
  21. Gan, R., He, Y., & Li, Y. (2022). Structural characteristics of taste active peptides in protein hydrolysates from tilapia by-products. Journal of Food Measurement and Characterization, 16(2), 1674-1687. https://doi.org/10.1007/s11694-022-01302-8
  22. Gao, J., Fang, D., Muinde Kimatu, B., Chen, X., Wu, X., Du, J., Yang, Q., Chen, H., Zheng, H., An, X., Zhao, L., & Hu, Q. (2021). Analysis of umami taste substances of morel mushroom (Morchella sextelata) hydrolysates derived from different enzymatic systems. Food Chemistry, 362, 130192. https://doi.org/10.1016/j.foodchem.2021.130192
  23. Gao, Y., Wu, X., McClements, D. J., Cheng, C., Xie, Y., Liang, R., Liu, J., Zou, L., & Liu, W. (2022). Encapsulation of bitter peptides in water-in-oil high internal phase emulsions reduces their bitterness and improves gastrointestinal stability. Food Chem, 386, 132787. https://doi.org/10.1016/j.foodchem.2022.132787
  24. Geisenhoff, H. (2009). Bitterness of soy protein hydrolysates according to molecular weight of peptides. [Master thesis]. Iowa State University.
  25. Giroldi, M., Grambusch, I. M., Lehn Neutzling, D., & Volken de Souza, C. F. (2021). Encapsulation of dairy protein hydrolysates: Recent trends and future prospects. Drying Technology, 39(11), 1513-1528. https://doi.org/10.1080/07373937.2021.1906695
  26. Gong, M., Mohan, A., Gibson, A., & Udenigwe, C. C. (2015). Mechanisms of plastein formation, and prospective food and nutraceutical applications of the peptide aggregates. Biotechnol Rep (Amst), 5, 63-69. https://doi.org/10.1016/j.btre.2014.12.003
  27. Hamada, J. S., & Marshall, W. E. (1989). Preparation and functional properties of enzymatically deamidated soy proteins. Journal of Food Science, 54(3), 598-601. https://doi.org/10.1111/j.1365-2621.1989.tb04661.x
  28. Harwalkar, V. R., & Elliott, J. A. (1971). Isolation of bitter and astringent fractions from cheddar cheese. Journal of Dairy Science, 54(1), 8-11. https://doi.org/10.3168/jds.S0022-0302(71)85772-7
  29. He, S., Zhang, Z., Sun, H., Zhu, Y., Zhao, J., Tang, M., Wu, X., & Cao, Y. (2019). Contributions of temperature and L-cysteine on the physicochemical properties and sensory characteristics of rapeseed flavor enhancer obtained from the rapeseed peptide and d-xylose Maillard reaction system. Industrial Crops and Products, 128, 455-463. https://doi.org/10.1016/j.indcrop.2018.11.048
  30. Hong, P. K., Ndagijimana, M., & Betti, M. (2016). Glucosamine-induced glycation of hydrolysed meat proteins in the presence or absence of transglutaminase: Chemical modifications and taste-enhancing activity. Food Chemistry, 197, 1143-1152. https://doi.org/10.1016/j.foodchem.2015.11.096
  31. Huang, M., Zhang, X., & Karangwa, E. (2015). Comparation sensory characteristic, non-volatile compounds, volatile compounds and antioxidant activity of MRPs by novel gradient temperature-elevating and traditional isothermal methods. Journal of Food Science and Technology-Mysore, 52(2), 858-866. https://doi.org/10.1007/s13197-013-1083-y
  32. Idowu, A. T., & Benjakul, S. (2019). Bitterness of fish protein hydrolysate and its debittering prospects. Journal of Food Biochemistry, 43(9), e12978. https://doi.org/10.1111/jfbc.12978
  33. Imai, K., Ikeda, A., Shimizu, K., & Honda, H. (2019). Selective elimination of bitter peptides by adsorption to heat-treated porous silica gel. Food Science and Technology Research, 25(2), 179-186. https://doi.org/10.3136/fstr.25.179
  34. Ishibashi, N., Arita, Y., Kanehisa, H., Kouge, K., Okai, H., & Fukui, S. (1987). Bitterness of leucine-containing peptides. Agricultural and Biological Chemistry, 51(9), 2389-2394. https://doi.org/10.1080/00021369.1987.10868411
  35. Ishibashi, N., Kouge, K., Shinoda, I., Kanehisa, H., & Okai, H. (1988). A mechanism for bitter taste sensibility in peptides. Agricultural and Biological Chemistry, 52(3), 819-827. https://doi.org/10.1080/00021369.1988.10868743
  36. Ishibashi, N., Kubo, T., Chino, M., Fukui, H., Shinoda, I., Kikuchi, E., & Okai, H. (1988). Taste of proline-containing peptides. Agricultural and Biological Chemistry, 52(1), 95-98. https://doi.org/10.1080/00021369.1988.10868631
  37. Ishibashi, N., Ono, I., Kato, K., Shigenaga, T., Shinoda, I., Okai, H., & Fukui, S. (1988). Role of the hydrophobic amino acid residue in the bitterness of peptides. Agricultural and Biological Chemistry, 52(1), 91-94. https://doi.org/10.1271/bbb1961.52.95
  38. Ishibashi, N., Sadamori, K., Yamamoto, O., Kanehisa, H., Kouge, K., Kikuchi, E., Okai, H., & Fukui, S. (1987). Bitterness of phenylalanine- and tyrosine-containing peptides. Agricultural and Biological Chemistry, 51(12), 3309-3313. https://doi.org/10.1271/bbb1961.51.3309
  39. Islam, M. S., Wang, H., Admassu, H., Sulieman, A. A., & Wei, F. A. (2022). Health benefits of bioactive peptides produced from muscle proteins: Antioxidant, anti-cancer, and anti-diabetic activities. Process Biochemistry, 116, 116-125. https://doi.org/10.1016/j.procbio.2022.03.007
  40. Ito, K., Koike, M., Kuroda, Y., Yamazaki-Ito, T., Terada, Y., Ishii, T., Nakamura, Y., Watanabe, T., & Kawarasaki, Y. (2021). Bitterness-masking peptides for epigallocatechin gallate identified through peptide array analysis. Food Science and Technology Research, 27(2), 221-228. https://doi.org/10.3136/fstr.27.221
  41. Iwaniak, A., Hrynkiewicz, M., Bucholska, J., Minkiewicz, P., & Darewicz, M. (2019). Understanding the nature of bitter-taste di- and tripeptides derived from food proteins based on chemometric analysis. Journal of Food Biochemistry, 43(1), e12500. https://doi.org/10.1111/jfbc.12500
  42. Iwaniak, A., Minkiewicz, P., Darewicz, M., & Hrynkiewicz, M. (2016). Food protein-originating peptides as tastants-Physiological, technological, sensory, and bioinformatic approaches. Food Research International, 89, 27-38. https://doi.org/10.1016/j.foodres.2016.08.010
  43. Kim, H. O., & Li-Chan, E. C. Y. (2006). Quantitative structure−activity relationship study of bitter peptides. Journal of Agricultural and Food Chemistry, 54(26), 10102-10111. https://doi.org/10.1021/jf062422j
  44. Kim, J. - S., Kim, H. - S., Lee, H. J., Park, S. H., Kim, K. H., Kang, S. I., & Heu, M. S. (2014). Lowering the bitterness of enzymatic hydrolysate using aminopeptidase-active fractions from the common squid (Todarodes pacificus) hepatopancreas. Korean Journal of Food Science and Technology, 46(6), 716-722. https://doi.org/10.9721/kjfst.2014.46.6.716
  45. Kim, M. J., Son, H. J., Kim, Y., Misaka, T., & Rhyu, M. R. (2015). Umami-bitter interactions: the suppression of bitterness by umami peptides via human bitter taste receptor. Biochemical and Biophysical Research Communications, 456(2), 586-590. https://doi.org/10.1016/j.bbrc.2014.11.114
  46. Kim, Y., Kim, E. Y., Son, H. J., Lee, J. J., Choi, Y. H., & Rhyu, M. R. (2017). Identification of a key umami-active fraction in modernized Korean soy sauce and the impact thereof on bitter-masking. Food Chem, 233, 256-262. https://doi.org/10.1016/j.foodchem.2017.04.123
  47. Lahrichi, S. L., Affolter, M., Zolezzi, I. S., & Panchaud, A. (2013). Food peptidomics: Large scale analysis of small bioactive peptides-A pilot study. Journal of Proteomics, 88, 83-91. https://doi.org/10.1016/j.jprot.2013.02.018
  48. Lalasidis, G., & Sjoberg, L. B. (1978). Two new methods of debittering protein hydrolysates and a fraction of hydrolysates with exceptionally high content of essential amino acids. Journal of Agricultural and Food Chemistry, 26(3), 742-749. https://doi.org/10.1021/jf60217a056
  49. Lei, F., Chen, Y., Chen, L., Zhang, L., & Zheng, J. (2021). An arginine aminopeptidase from marine Bacillus axarquiensis SWJSX8 and its application in improving pumpkin seed protein hydrolysis. International Journal of Food Science and Technology, 56(9), 4680-4689. https://doi.org/10.1111/ijfs.15163
  50. Lei, F., Zhao, Q., Sun-Waterhouse, D., & Zhao, M. (2017). Characterization of a salt-tolerant aminopeptidase from marine Bacillus licheniformis SWJS33 that improves hydrolysis and debittering efficiency for soy protein isolate. Food Chemistry, 214, 347-353. https://doi.org/10.1016/j.foodchem.2016.07.028
  51. Li, D., & Zhao, X. - H. (2012). Limited deamidation of soybean protein isolates by glutaminase and its impacts on the selected properties. International Journal of Food Properties, 15(3), 638-655. https://doi.org/10.1080/10942912.2010.494760
  52. Li, M., Zhu, K. - X., Peng, J., Guo, X. - N., Amza, T., Peng, W., & Zhou, H. - M. (2014). Delineating the protein changes in Asian noodles induced by vacuum mixing. Food Chemistry, 143, 9-16. https://doi.org/10.1016/j.foodchem.2013.07.086
  53. Li, Q., Fu, Y., Zhang, L., Otte, J., & Lametsch, R. (2020). Plastein from hydrolysates of porcine hemoglobin and meat using Alcalase and papain. Food Chemistry, 320, 126654. https://doi.org/10.1016/j.foodchem.2020.126654
  54. Liao, L., Qiu, C. - Y., Liu, T. - X., Zhao, M. - M., Ren, J. - Y., & Zhao, H. - F. (2010). Susceptibility of wheat gluten to enzymatic hydrolysis following deamidation with acetic acid and sensory characteristics of the resultant hydrolysates. Journal of Cereal Science, 52(3), 395-403. https://doi.org/10.1016/j.jcs.2010.07.001
  55. Lim, T., He, Y., Park, B., Choi, Y., & Hwang, K. T. (2022). Wheat gluten hydrolysates prepared by sequential treatment with different combinations of commercial proteases. Journal of Food Measurement and Characterization, https://doi.org/10.1007/s11694-022-01506-y
  56. Lin, X., Dong, L., Yu, D., Wang, B., & Pan, L. (2020). High-level expression and characterization of the thermostable leucine aminopeptidase Thelap from the thermophilic fungus Thermomyces lanuginosus in Aspergillus niger and its application in soy protein hydrolysis. Protein Expression and Purification, 167, 105544. https://doi.org/10.1016/j.pep.2019.105544
  57. Liu, B. Y., Zhu, K. X., Guo, X. N., Peng, W., & Zhou, H. M. (2016). Changes in the enzyme-induced release of bitter peptides from wheat gluten hydrolysates. RSC Advances, 6(104), 102249-102257. https://doi.org/10.1039/C6RA22155F
  58. Liu, B. Y., Zhu, K. X., Guo, X. N., Peng, W., & Zhou, H. M. (2017). Effect of deamidation-induced modification on umami and bitter taste of wheat gluten hydrolysates. Journal of the Science of Food and Agriculture, 97(10), 3181-3188. https://doi.org/10.1002/jsfa.8162
  59. Liu, B. Y., Zhu, K. X., Peng, W., Guo, X. N., & Zhou, H. M. (2016). Effect of sequential hydrolysis with endo- and exo-peptidase on bitterness properties of wheat gluten hydrolysates. RSC Advances, 6(33), 27659-27668. https://doi.org/10.1039/C5RA28171G
  60. Liu, P., Huang, M., Song, S., Hayat, K., Zhang, X., Xia, S., & Jia, C. (2010). Sensory Characteristics and antioxidant activities of maillard reaction products from soy protein hydrolysates with different molecular weight distribution. Food and Bioprocess Technology, 5(5), 1775-1789. https://doi.org/10.1007/s11947-010-0440-3
  61. Liu, X., Jiang, D., & Peterson, D. G. (2014). Identification of bitter peptides in whey protein hydrolysate. Journal of Agricultural and Food Chemistry, 62(25), 5719-5725. https://doi.org/10.1021/jf4019728
  62. Lu, Z., Xie, G., Wu, D., Yang, L., Jin, Z., Hu, Z., Xu, X., & Lu, J. (2021). Isolation and identification of the bitter compound from Huangjiu. Food Chem, 349, 129133. https://doi.org/10.1016/j.foodchem.2021.129133
  63. Maehashi, K., & Huang, L. (2009). Bitter peptides and bitter taste receptors. Cellular and Molecular Life Sciences, 66(10), 1661-1671. https://doi.org/10.1007/s00018-009-8755-9
  64. Matoba, T., & Hata, T. (1972). Relationship between bitterness of peptides and their chemical structures. Agricultural and Biological Chemistry, 36(8), 1423-1431. https://doi.org/10.1080/00021369.1972.10860410
  65. Matsudomi, N., Tanaka, A., Kato, A., & Kobayashi, K. (1986). Functional properties of deamidated gluten obtained by treating with chymotrypsin at alkali pH. Agricultural and Biological Chemistry, 50(8), 1989-1994. https://doi.org/10.1080/00021369.1986.10867694
  66. Meinlschmidt, P., Schweiggert-Weisz, U., & Eisner, P. (2016). Soy protein hydrolysates fermentation: Effect of debittering and degradation of major soy allergens. LWT-Food Science and Technology, 71, 202-212. https://doi.org/10.1016/j.lwt.2016.03.026
  67. Mendanha, D. V., Molina Ortiz, S. E., Favaro-Trindade, C. S., Mauri, A., Monterrey-Quintero, E. S., & Thomazini, M. (2009). Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Research International, 42(8), 1099-1104. https://doi.org/10.1016/j.foodres.2009.05.007
  68. Miwa, N., Yokoyama, K., Wakabayashi, H., & Nio, N. (2010). Effect of deamidation by protein-glutaminase on physicochemical and functional properties of skim milk. International Dairy Journal, 20(6), 393-399. https://doi.org/10.1016/j.idairyj.2009.12.015
  69. Murray, T. K., & Baker, B. E. (1952). Studies on protein hydrolysis I-preliminary observations on the taste of enzymic protein-hydrolysates. Journal of Science Food Agriculture, 3, 470-475. https://doi.org/10.1002/jsfa.2740031006
  70. Murthy, L. N., Phadke, G. G., Mohan, C. O., Chandra, M. V., Annamalai, J., Visnuvinayagam, S., Unnikrishnan, P., & Ravishankar, C. N. (2017). Characterization of spray dried hydrolyzed proteins from pink perch meat added with maltodextrin and gum arabic. Journal of Aquatic Food Product Technology, 26(8), 913-928. https://doi.org/10.1080/10498850.2017.1362684
  71. Newman, J., O'Riordan, D., Jacquier, J. C., & O'Sullivan, M. (2015). Masking of bitterness in dairy protein hydrolysates: Comparison of an electronic tongue and a trained sensory panel as means of directing the masking strategy. LWT-Food Science and Technology, 63(1), 751-757. https://doi.org/10.1016/j.lwt.2015.03.019
  72. Ney, K. H. (1971). Prediction of bitterness of peptides from their amino acid composition. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung, 2, 64. https://doi.org/10.1007/BF01879606
  73. Ney, K. H. (1979). Bitterness of peptides: amino acid composition and chain length. Food Taste Chemistry, 115, 149-173. https://doi.org/10.1021/bk-1979-0115.ch006
  74. Ngo, D. H., Vo, T. S., Ngo, D. N., Wijesekara, I., & Kim, S. K. (2012). Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int J Biol Macromol, 51(4), 378-383. https://doi.org/10.1016/j.ijbiomac.2012.06.001
  75. Nirmal, N. P., Santivarangkna, C., Rajput, M. S., Benjakul, S., & Maqsood, S. (2022). Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf, 21(2), 1803-1842. https://doi.org/10.1111/1541-4337.12917
  76. Onuh, J. O., Selvamuthukumaran, M., & Pathak, Y. V. (2021). Production, bioavailability, health potential, and regulatory issues: Taylor and Francis Group.
  77. Otagiri, K., Nosho, Y., Shinoda, I., Fukui, H., & Okai, H. (1985). Studies on a model of bitter peptides including arginine, proline and phenylalanine residues. I. Bitter taste of di- and tripeptides, and bitterness increase of the model peptides by extension of the peptide chain. Agricultural and Biological Chemistry, 49(4), 1019-1026. https://doi.org/10.1080/00021369.1985.10866857
  78. Ouyang, X., Liu, Y., Qu, R., Tian, M., Yang, T., Zhu, R., Gao, H., Jin, M., & Huang, J. (2021). Optimizing protein-glutaminase expression in Bacillus subtilis. Current Microbiology, 78(5), 1752-1762. https://doi.org/10.1007/s00284-021-02404-0
  79. Panyam, D., & Kilara, A. (1996). Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science and Technology, 7(4), 120-125. https://doi.org/10.1016/0924-2244(96)10012-1
  80. Qin, D., Bo, W., Zheng, X., Hao, Y., Li, B., Zheng, J., & Liang, G. (2022). DFBP: A comprehensive database of food-derived bioactive peptides for peptidomics research. Bioinformatics, 38(12), 3275-3280. https://doi.org/10.1093/bioinformatics/btac323
  81. Rao, P. S., Bajaj, R. K., Mann, B., Arora, S., & Tomar, S. K. (2016). Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin-gum arabic blend. Journal of Food Science and Technology-Mysore, 53(10), 3834-3843. https://doi.org/10.1007/s13197-016-2376-8
  82. Ren, J., Song, C. - L., Zhang, H. - Y., Kopparapu, N. - K., & Zheng, X. - Q. (2017). Effect of Hydrolysis degree on structural and interfacial properties of sunflower protein isolates. Journal of Food Processing and Preservation, 41(1), e13092. https://doi.org/10.1111/jfpp.13092
  83. Rhyu, M. - R., & Kim, E. - Y. (2011). Umami taste characteristics of water extract of Doenjang, a Korean soybean paste: Low-molecular acidic peptides may be a possible clue to the taste. Food Chemistry, 127(3), 1210-1215. https://doi.org/10.1016/j.foodchem.2011.01.128
  84. Saha, B. C., & Hayashi, K. (2001). Debittering of protein hydrolyzates. Biotechnology Advances, 19(5), 355-370. https://doi.org/10.1016/S0734-9750(01)00070-2
  85. Sanjukta, S., & Rai, A. K. (2016). Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science and Technology, 50, 1-10. https://doi.org/10.1016/j.tifs.2016.01.010
  86. Sarabandi, K., Gharehbeglou, P., & Jafari, S. M. (2019). Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Drying Technology, 38(5-6), 577-595. https://doi.org/10.1080/07373937.2019.1689399
  87. Sarabandi, K., Mahoonak, A. S., Hamishehkar, H., Ghorbani, M., & Jafari, S. M. (2019). Protection of casein hydrolysates within nanoliposomes: Antioxidant and stability characterization. Journal of Food Engineering, 251, 19-28. https://doi.org/10.1016/j.jfoodeng.2019.02.004
  88. Sarabandi, K., Sadeghi Mahoonak, A., Hamishekar, H., Ghorbani, M., & Jafari, S. M. (2018). Microencapsulation of casein hydrolysates: Physicochemical, antioxidant and microstructure properties. Journal of Food Engineering, 237, 86-95. https://doi.org/10.1016/j.jfoodeng.2018.05.036
  89. Schlichtherle-Cerny, H., & Amado, R. (2002). Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten. Journal of Agricultural and Food Chemistry, 50(6), 1515-1522. https://doi.org/10.1021/jf010989o
  90. Seo, W. H., Lee, H. G., & Baek, H. H. (2008). Evaluation of bitterness in enzymatic hydrolysates of soy protein isolate by taste dilution analysis. Journal of Food Science, 73(1), S41-S46. https://doi.org/10.1111/j.1750-3841.2007.00610.x
  91. Siewe, F. B., Kudre, T. G., Bettadaiah, B. K., & Narayan, B. (2020). Effects of ultrasound-assisted heating on aroma profile, peptide structure, peptide molecular weight, antioxidant activities and sensory characteristics of natural fish flavouring. Ultrasonics - Sonochemistry, 65, 105055. https://doi.org/10.1016/j.ultsonch.2020.105055
  92. Singh, A., Idowu, A. T., Benjakul, S., Kishimura, H., Aluko, R. E., & Kumagai, Y. (2020). Debittering of salmon (Salmo salar) frame protein hydrolysate using 2-butanol in combination with beta-cyclodextrin: Impact on some physicochemical characteristics and antioxidant activities. Food Chemistry, 321, 126686. https://doi.org/10.1016/j.foodchem.2020.126686
  93. Su, G., Zheng, X., Zou, J., Waterhouse, G. I. N., & Sun-Waterhouse, D. (2021). Insight into the advantages of premixing yeast-wheat gluten and combining ultrasound and transglutaminase pretreatments in producing umami enzymatic protein hydrolysates. Food Chemistry, 342, 128317. https://doi.org/10.1016/j.foodchem.2020.128317
  94. Su, G. W., Ren, J. Y., Yang, B., Cui, C., & Zhao, M. M. (2011). Comparison of hydrolysis characteristics on defatted peanut meal proteins between a protease extract from Aspergillus oryzae and commercial proteases. Food Chemistry, 126(3), 1306-1311. https://doi.org/10.1016/j.foodchem.2010.11.083
  95. Suh, H. J., Bae, S. H., & Noh, D. O. (2000). Debittering of corn gluten hydrolysate with active carbon. Journal of the Science of Food and Agriculture, 80, 614-618. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<614::AID-JSFA580>3.0.CO;2-L
  96. Sun, W., Zhao, M., Cui, C., Zhao, Q., & Yang, B. (2010). Effect of Maillard reaction products derived from the hydrolysate of mechanically deboned chicken residue on the antioxidant, textural and sensory properties of Cantonese sausages. Meat Science, 86(2), 276-282. https://doi.org/10.1016/j.meatsci.2010.04.014
  97. Sun, X., Acquah, C., Gazme, B., Boachie, R. T., Nwachukwu, I. D., & Udenigwe, C. C. (2021). Mechanisms of plastein formation influence the IgE-binding activity of egg white protein hydrolysates after simulated static digestion. Food Chemistry, 345, 128783. https://doi.org/10.1016/j.foodchem.2020.128783
  98. Sun, X., Okagu, O. D., & Udenigwe, C. C. (2021). Encapsulation technology for protection and delivery of bioactive peptides. In Biologically active peptides (pp. 331-356).
  99. Synowiecki, J., Jagielka, R., & Shahidi, F. (1996). Preparation of hydrolysates from bovine red blood cells and their debittering following plastein reaction. Food Chemistry, 57(3), 435-439. https://doi.org/10.1016/S0308-8146(96)00005-2
  100. Tamura, M., Miyoshi, T., Mori, N., Kinomura, K., Kawaguchi, M., Ishibashi, N., & Okai, H. (2014). Mechanism for the bitter tasting potency of peptides using O-Aminoacyl sugars as model compounds+. Agricultural and Biological Chemistry, 54(6), 1401-1409. https://doi.org/10.1080/00021369.1990.10870166
  101. Tong, X., Lian, Z., Miao, L., Qi, B., Zhang, S., Li, Y., Wang, H., & Jiang, L. (2020). An innovative two-step enzyme-assisted aqueous extraction for the production of reduced bitterness soybean protein hydrolysates with high nutritional value. LWT-Food Science and Technology, 134, https://doi.org/10.1016/j.lwt.2020.110151
  102. Tritean, N., Bărbieru, O. - G., Constantinescu-Aruxandei, D., & Oancea, F. (2019). Extraction and plastein reaction of bioactive peptides from Agaricus bisporus mushrooms. Proceedings, 29(1), 106. https://doi.org/10.3390/proceedings2019029106
  103. Wang, F., Yang, W., & Zhou, B. (2021). Molecular-level understanding of the hTAS2R1 receptor-bitter tasting tetra-peptide binding: a structural biology study based on computational approaches. New Journal of Chemistry, 45(45), 21369-21381. https://doi.org/10.1039/d1nj04014f
  104. Wang, F., & Zhou, B. (2019). Quantitative structure-activity relationship models for bitter-tasting tripeptides based on integrated descriptors. Structural Chemistry, 31(2), 573-583. https://doi.org/10.1007/s11224-019-01432-8
  105. Wang, X. J., Zheng, X. Q., Kopparapu, N. K., Cong, W. S., Deng, Y. P., Sun, X. J., & Liu, X. L. (2014). Purification and evaluation of a novel antioxidant peptide from corn protein hydrolysate. Process Biochemistry, 49(9), 1562-1569. https://doi.org/10.1016/j.procbio.2014.05.014
  106. Xia, Y., Zhu, L., Wu, G., Liu, T., Li, X., Wang, X., & Zhang, H. (2022). Comparative study of various methods used for bitterness reduction from pea (Pisum sativum L.) protein hydrolysates. Lwt, 159, https://doi.org/10.1016/j.lwt.2022.113228
  107. Xu, B., & Chung, H. Y. (2019). Quantitative structure-activity relationship study of bitter di-, tri- and tetrapeptides using integrated descriptors. Molecules, 24(15), 2846. https://doi.org/10.3390/molecules24152846
  108. Xu, L., Gong, Y., Gern, J. E., Ikeda, S., & Lucey, J. A. (2018). Glycation of whey protein with dextrans of different molar mass: Effect on immunoglobulin E-binding capacity with blood sera obtained from patients with cow milk protein allergy. Journal of Dairy Science, 101(8), 6823-6834. https://doi.org/10.3168/jds.2017-14338
  109. Xu, L., Gong, Y., Gern, J. E., & Lucey, J. A. (2020). Influence of whey protein hydrolysis in combination with dextran glycation on immunoglobulin E binding capacity with blood sera obtained from patients with a cow milk protein allergy. Journal of Dairy Science, 103(2), 1141-1150. https://doi.org/10.3168/jds.2019-17187
  110. Xu, Q., Singh, N., Hong, H., Yan, X., Yu, W., Jiang, X., Chelikani, P., & Wu, J. (2019). Hen protein-derived peptides as the blockers of human bitter taste receptors T2R4, T2R7 and T2R14. Food Chemistry, 283, 621-627. https://doi.org/10.1016/j.foodchem.2019.01.059
  111. Yang, H., Zong, X., Cui, C., Mu, L., & Zhao, H. (2018). Wheat gluten hydrolysates separated by macroporous resins enhance the stress tolerance in brewer's yeast. Food Chemistry, 268, 162-170. https://doi.org/10.1016/j.foodchem.2018.06.082
  112. Yang, S., Mao, X. - Y., Li, F. - F., Zhang, D., Leng, X. - J., Ren, F. - Z., & Teng, G. - X. (2012). The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. European Food Research and Technology, 235(1), 91-97. https://doi.org/10.1007/s00217-012-1735-6
  113. Yu, M., He, S., Tang, M., Zhang, Z., Zhu, Y., & Sun, H. (2018). Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate. Food Chemistry, 243, 249-257. https://doi.org/10.1016/j.foodchem.2017.09.139
  114. Zhang, G., Ma, S., Liu, X., Yin, X., Liu, S., Zhou, J., & Du, G. (2021). Protein-glutaminase: research progress and prospect in food manufacturing. Food Bioscience, 43, 101314. https://doi.org/10.1016/j.fbio.2021.101314
  115. Zhang, J., Zhao, M., Su, G., & Lin, L. (2019). Identification and taste characteristics of novel umami and umami-enhancing peptides separated from peanut protein isolate hydrolysate by consecutive chromatography and UPLC-ESI-QTOF-MS/MS. Food Chemistry, 278, 674-682. https://doi.org/10.1016/j.foodchem.2018.11.114
  116. Zhao, J., Wang, T., Xie, J., Xiao, Q., Du, W., Wang, Y., Cheng, J., & Wang, S. (2019). Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems. Food Chemistry, 274, 79-88. https://doi.org/10.1016/j.foodchem.2018.08.096
  117. Zhu, X., Sun-Waterhouse, D., Chen, J., Cui, C., & Wang, W. (2019). Bitter-tasting hydrophobic peptides prepared from soy sauce using aqueous ethanol solutions influence taste sensation. International Journal of Food Science and Technology, 55(1), 146-156. https://doi.org/10.1111/ijfs.14271

MeSH Term

Humans
Protein Hydrolysates
Taste
Peptides
Maillard Reaction
Technology

Chemicals

Protein Hydrolysates
Peptides