Song Wu, Yue Huang, Mochen Zhang, Zheng Gong, Guoliang Wang, Xinchang Zheng, Wenting Zong, Wei Zhao, Peiqi Xing, Rujiao Li, Zhaoqi Liu, Yiming Bao
Alternative splicing (AS) is a fundamental process that governs almost all aspects of cellular functions, and dysregulation in this process has been implicated in tumor initiation, progression and treatment resistance. With accumulating studies of carcinogenic mis-splicing in cancers, there is an urgent demand to integrate cancer-associated splicing changes to better understand their internal cross-talks and functional consequences from a global view. However, a resource of key functional AS events in human cancers is still lacking. To fill the gap, we developed ASCancer Atlas (https://ngdc.cncb.ac.cn/ascancer), a comprehensive knowledgebase of aberrant splicing in human cancers. Compared to extant databases, ASCancer Atlas features a high-confidence collection of 2006 cancer-associated splicing events experimentally proved to promote tumorigenesis, a systematic splicing regulatory network, and a suit of multi-scale online analysis tools. For each event, we manually curated the functional axis including upstream splicing regulators, splicing event annotations, downstream oncogenic effects, and possible therapeutic strategies. ASCancer Atlas also houses about 2 million computationally putative splicing events. Additionally, a user-friendly web interface was built to enable users to easily browse, search, visualize, analyze, and download all splicing events. Overall, ASCancer Atlas provides a unique resource to study the functional roles of splicing dysregulation in human cancers.
Nat Commun. 2022 Apr 4;13(1):1793
[PMID:
35379802]
Nucleic Acids Res. 2013 Jan;41(Database issue):D1096-103
[PMID:
23087378]
Cancer Cell. 2015 May 11;27(5):617-30
[PMID:
25965569]
Trends Cancer. 2021 Apr;7(4):347-358
[PMID:
33500226]
Brief Bioinform. 2021 May 20;22(3):
[PMID:
32820322]
Nucleic Acids Res. 2022 Jan 7;50(D1):D1004-D1009
[PMID:
34718752]
Nucleic Acids Res. 2022 Jan 7;50(D1):D1340-D1347
[PMID:
34554251]
Nucleic Acids Res. 2021 Jan 8;49(D1):D10-D17
[PMID:
33095870]
Cancer Res. 2018 Oct 15;78(20):5780-5792
[PMID:
30093560]
PLoS One. 2014 Jan 31;9(1):e87361
[PMID:
24498085]
Biopreserv Biobank. 2015 Oct;13(5):307-8
[PMID:
26484569]
Nucleic Acids Res. 2021 Jan 8;49(D1):D1144-D1151
[PMID:
33237278]
Nucleic Acids Res. 2021 Jan 8;49(D1):D916-D923
[PMID:
33270111]
Nucleic Acids Res. 2023 Jan 6;51(D1):D18-D28
[PMID:
36420893]
Sci Rep. 2020 Sep 2;10(1):14453
[PMID:
32879328]
Nucleic Acids Res. 2019 Jan 8;47(D1):D909-D916
[PMID:
30329095]
Nat Rev Clin Oncol. 2020 Aug;17(8):457-474
[PMID:
32303702]
Nat Cancer. 2022 May;3(5):536-546
[PMID:
35624337]
Bioinformatics. 2015 Dec 15;31(24):3997-9
[PMID:
26315911]
Cancer Res. 2019 Oct 1;79(19):4923-4936
[PMID:
31331910]
Cancer Cell. 2018 Aug 13;34(2):211-224.e6
[PMID:
30078747]
Nature. 2011 Nov 23;480(7377):387-90
[PMID:
22113612]
Brief Bioinform. 2022 Jul 18;23(4):
[PMID:
35671504]
Nucleic Acids Res. 2021 Jan 8;49(D1):D437-D451
[PMID:
33211854]
Cell Rep. 2018 Apr 3;23(1):282-296.e4
[PMID:
29617667]
Nat Biotechnol. 2020 Jun;38(6):675-678
[PMID:
32444850]
Nat Commun. 2020 Feb 5;11(1):708
[PMID:
32024842]
Cell. 2018 Apr 5;173(2):283-285
[PMID:
29625045]
N Engl J Med. 2014 Sep 11;371(11):1028-38
[PMID:
25184630]
Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419
[PMID:
33125078]
Nat Commun. 2019 Jan 11;10(1):172
[PMID:
30635567]
Nature. 2019 Oct;574(7777):273-277
[PMID:
31578525]
Wiley Interdiscip Rev RNA. 2018 Jul;9(4):e1476
[PMID:
29693319]
Nucleic Acids Res. 2020 Jan 8;48(D1):D882-D889
[PMID:
31713622]
Nucleic Acids Res. 2023 Jan 6;51(D1):D208-D216
[PMID:
36318250]
Nat Commun. 2018 Jun 6;9(1):2189
[PMID:
29875359]
Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082
[PMID:
29126136]
Nucleic Acids Res. 2020 Jan 8;48(D1):D896-D907
[PMID:
31642488]
Cancer Discov. 2020 Jun;10(6):806-821
[PMID:
32188705]
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16391-16400
[PMID:
32601196]