CRISPR-Cas9 technology has been utilized in different organisms for targeted mutagenesis, offering a fast, precise and cheap approach to speed up molecular breeding and study of gene function. Until now, many researchers have established the demonstration of applying the CRISPR/Cas9 system to various fungal model species. However, there are very few guidelines available for CRISPR/Cas9 genome editing in . In this study, we present CRISPR/Cas9 genome editing in . To optimize the guide ribonucleic acid (gRNA) expression, we constructed a modified single-guide ribonucleic acid (sgRNA)/Cas9 expression plasmid. By co-transforming an sgRNA/Cas9 expression plasmid along with maker-free donor deoxyribonucleic acid (DNA), we precisely disrupted the and genes, respectively, and created targeted gene insertion ( gene) and iterative gene editing in ( and genes). Furthermore, co-delivering two sgRNA/Cas9 expression plasmids resulted in precise gene deletion (with donor DNA) in the and genes, respectively, and efficient removal of the DNA between the two gRNA targeting sites (no donor DNA) in the gene. Our results showed that the CRISPR/Cas9 system is a powerful tool for precise genome editing in , and our approach provides a great potential for manipulating targeted genes and contributions to gene functional study of .
Biotechnol Biofuels. 2021 Oct 23;14(1):206
[PMID:
34688310]
Acta Microbiol Immunol Hung. 2009 Jun;56(2):169-80
[PMID:
19621768]
PLoS One. 2015 Jul 15;10(7):e0133085
[PMID:
26177455]
Science. 2010 Jan 8;327(5962):167-70
[PMID:
20056882]
Genesis. 2018 May;56(5):e23212
[PMID:
29676032]
Biotechnol Lett. 2016 Sep;38(9):1603-10
[PMID:
27262296]
Biomolecules. 2021 Oct 15;11(10):
[PMID:
34680159]
Nat Commun. 2022 May 30;13(1):3006
[PMID:
35637227]
Front Microbiol. 2021 Feb 11;12:638096
[PMID:
33643273]
Genome Biol. 2015 Nov 02;16:218
[PMID:
26521937]
Int J Mol Sci. 2019 Jul 24;20(15):
[PMID:
31344908]
Fungal Genet Biol. 2019 Sep;130:43-53
[PMID:
31048007]
Appl Microbiol Biotechnol. 2010 Mar;86(1):51-62
[PMID:
20107987]
Fungal Biol Biotechnol. 2015 Jul 15;2:4
[PMID:
28955455]
ACS Synth Biol. 2016 Jul 15;5(7):754-64
[PMID:
27072635]
3 Biotech. 2016 Jun;6(1):103
[PMID:
28330173]
Front Microbiol. 2014 Dec 23;5:717
[PMID:
25566227]
ACS Synth Biol. 2020 Aug 21;9(8):1968-1977
[PMID:
32786921]
Atheroscler Suppl. 2004 Oct;5(3):125-30
[PMID:
15531285]
J Fungi (Basel). 2016 Apr 30;2(2):
[PMID:
29376930]
Nat Biotechnol. 2014 Dec;32(12):1262-7
[PMID:
25184501]
Curr Genet. 2022 Apr;68(2):153-164
[PMID:
35043238]
J Ind Microbiol Biotechnol. 2014 Mar;41(3):585-92
[PMID:
24306453]
PLoS One. 2021 Mar 5;16(3):e0247603
[PMID:
33667229]
ACS Synth Biol. 2019 Feb 15;8(2):445-454
[PMID:
30616338]
Curr Opin Biotechnol. 2021 Jun;69:273-280
[PMID:
33713917]
Mycology. 2019 Apr 22;10(4):191-209
[PMID:
31632829]
Cell Discov. 2015 May 12;1:15007
[PMID:
27462408]
Nucleic Acids Res. 2013 Apr;41(7):4336-43
[PMID:
23460208]
mSphere. 2017 Nov 22;2(6):
[PMID:
29202040]
Elife. 2014 Dec 15;3:e04766
[PMID:
25497837]
Front Plant Sci. 2021 Aug 10;12:700925
[PMID:
34447401]