Sedimentary DNA for tracking the long-term changes in biodiversity.

Haoyu Li, Hucai Zhang, Fengqin Chang, Qi Liu, Yang Zhang, Fengwen Liu, Xiaonan Zhang
Author Information
  1. Haoyu Li: Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
  2. Hucai Zhang: Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China. zhanghc@ynu.edu.cn. ORCID
  3. Fengqin Chang: Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
  4. Qi Liu: Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
  5. Yang Zhang: Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
  6. Fengwen Liu: Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
  7. Xiaonan Zhang: Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.

Abstract

Understanding long-term dynamics is vitally important for explaining current biodiversity patterns and setting conservation goals in a changing world. However, the changes in biodiversity in time and space, particularly the dynamics at the centuries or even longer time scales, are poorly documented because of a lack of continuous monitoring data. The sedimentary DNA (sedDNA) has a great potential for paleo-community reconstruction, and it has recently been used as a powerful tool to characterize past dynamics in terms of biodiversity over geological timescales. In particular, it is useful for prokaryotes and eukaryotes that do not fossilize; hence, it is revolutionizing the scope of paleoecological research. Here, a "Research Weaving" method was performed with systematic maps and bibliometric webs based on the Web of Science for Science Citation Index Expanded, presenting a comprehensive landscape of the sedDNA that traces biological dynamics. We identified that most sedDNA-based studies have focused on microbial dynamics and on using samples from multitypes of sediments. This review summarized the advantages and common applications of sedDNA, focused on the biodiversity in microbial communities, and provided an outlook for the future of sedDNA research.

Keywords

References

Abirami B, Radhakrishnan M, Kumaran S, Wilson A (2021) Impacts of global warming on marine microbial communities. Sci Total Environ 791:147905. https://doi.org/10.1016/j.scitotenv.2021.147905 [DOI: 10.1016/j.scitotenv.2021.147905]
Alsos IG, Sjoegren P, Edwards ME, Landvik JY, Gielly L, Forwick M, Coissac E, Brown AG, Jakobsen LV, Foreid MK, Pedersen MW (2016) Sedimentary ancient DNA from Lake Skartjorna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene 26:627–642. https://doi.org/10.1177/0959683615612563 [DOI: 10.1177/0959683615612563]
Alsos IG, Lammers Y, Kjellman SE, Merkel MKF, Bender EM, Rouillard A, Erlendsson E, Gudmundsdottir ER, Benediktsson IO, Farnsworth WR, Brynjolfsson S, Gisladottir G, Eddudottir SD, Schomacker A (2021) Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnam) AD 870. Quat Sci Rev 259:106903. https://doi.org/10.1016/j.quascirev.2021.106903 [DOI: 10.1016/j.quascirev.2021.106903]
Aria M, Cuccurullo C (2017) bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr 11:959–975. https://doi.org/10.1016/j.joi.2017.08.007 [DOI: 10.1016/j.joi.2017.08.007]
Armbrecht LH, Coolen MJL, Lejzerowicz F, George SC, Negandhi K, Suzuki Y, Young J, Foster NR, Armand LK, Cooper A, Ostrowski M, Focardi A, Stat M, Moreau JW, Weyrich LS (2019) Ancient DNA from marine sediments: precautions and considerations for seafloor coring, sample handling and data generation. Earth Sci Rev 196:102887. https://doi.org/10.1016/j.earscirev.2019.102887 [DOI: 10.1016/j.earscirev.2019.102887]
Armbrecht L, Herrando-Perez S, Eisenhofer R, Hallegraeff GM, Bolch CJS, Cooper A (2020) An optimized method for the extraction of ancient eukaryote DNA from marine sediments. Mol Ecol Resour 20:906–919. https://doi.org/10.1111/1755-0998.13162 [DOI: 10.1111/1755-0998.13162]
Armbrecht L, Hallegraeff G, Bolch CJS, Woodward C, Cooper A (2021) Hybridisation capture allows DNA damage analysis of ancient marine eukaryotes. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-82578-6 [DOI: 10.1038/s41598-021-82578-6]
Bálint M, Pfenninger M, Grossart H-P, Taberlet P, Vellend M, Leibold MA, Englund G, Bowler D (2018) Environmental DNA time series in ecology. Trends Ecol Evol 33:945–957. https://doi.org/10.1016/j.tree.2018.09.003 [DOI: 10.1016/j.tree.2018.09.003]
Beng KC, Corlett RT (2020) Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers Conserv 29:2089–2121. https://doi.org/10.1007/s10531-020-01980-0 [DOI: 10.1007/s10531-020-01980-0]
Biskaborn BK, Herzschuh U, Bolshiyanov D, Savelieva L, Diekmann B (2012) Environmental variability in northeastern Siberia during the last ~13,300yr inferred from lake diatoms and sediment–geochemical parameters. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:22–36. https://doi.org/10.1016/j.palaeo.2012.02.003 [DOI: 10.1016/j.palaeo.2012.02.003]
Bremond L, Favier C, Ficetola GF, Tossou MG, Akouégninou A, Gielly L, Giguet-Covex C, Oslisly R, Salzmann U (2017) Five thousand years of tropical lake sediment DNA records from Benin. Quat Sci Rev 170:203–211. https://doi.org/10.1016/j.quascirev.2017.06.025 [DOI: 10.1016/j.quascirev.2017.06.025]
Cabrera MdCG, Young JM, Roff G, Staples T, Ortiz JC, Pandolfi JM, Cooper A (2019) Broadening the taxonomic scope of coral reef palaeoecological studies using ancient DNA. Mol Ecol 28:2636–2652. https://doi.org/10.1111/mec.15038 [DOI: 10.1111/mec.15038]
Capo E, Debroas D, Arnaud F, Domaizon I (2015) Is planktonic diversity well recorded in sedimentary DNA? Toward the reconstruction of past protistan diversity. Microb Ecol 70:865–875. https://doi.org/10.1007/s00248-015-0627-2 [DOI: 10.1007/s00248-015-0627-2]
Capo E, Debroas D, Arnaud F, Perga M-E, Chardon C, Domaizon I (2017) Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming. Environ Microbiol 19:2873–2892. https://doi.org/10.1111/1462-2920.13815 [DOI: 10.1111/1462-2920.13815]
Capo E, Giguet-Covex C, Rouillard A, Nota K, Heintzman P, Vuillemin A, Ariztegui D, Arnaud F, Belle S, Bertilsson S (2021) Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4:6. https://doi.org/10.3390/quat4010006 [DOI: 10.3390/quat4010006]
Capo E, Monchamp M-E, Coolen MJL, Domaizon I, Armbrecht L, Bertilsson S (2022) Environmental paleomicrobiology: using DNA preserved in aquatic sediments to its full potential. Environ Microbiol https://doi.org/10.1111/1462-2920.15913
Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407. https://doi.org/10.1016/j.watres.2011.12.016 [DOI: 10.1016/j.watres.2011.12.016]
Chang J, Zhang E, Liu E, Sun W, Langdon PG, Shulmeister J (2018) A 2500-year climate and environmental record inferred from subfossil chironomids from Lugu Lake, southwestern China. Hydrobiologia 811:193–206. https://doi.org/10.1007/s10750-017-3488-5 [DOI: 10.1007/s10750-017-3488-5]
Chen W, Ficetola GF (2020) Numerical methods for sedimentary-ancient-DNA-based study on past biodiversity and ecosystem functioning. Environ DNA 2:115–129. https://doi.org/10.1002/edn3.79 [DOI: 10.1002/edn3.79]
Chen X, Chen F, Zhou A, Huang X, Tang L, Wu D, Zhang X, Yu J (2014) Vegetation history, climatic changes and Indian summer monsoon evolution during the Last Glaciation (36,400–13,400 cal yr BP) documented by sediments from Xingyun Lake, Yunnan, China. Palaeogeogr Palaeoclimatol Palaeoecol 410:179–189. https://doi.org/10.1016/j.palaeo.2014.05.027 [DOI: 10.1016/j.palaeo.2014.05.027]
Chevalier M et al (2020) Pollen-based climate reconstruction techniques for late Quaternary studies. Earth Sci Rev 210:103384. https://doi.org/10.1016/j.earscirev.2020.103384 [DOI: 10.1016/j.earscirev.2020.103384]
Clarke CL, Alsos IG, Edwards ME, Paus A, Gielly L, Haflidason H, Mangerud J, Regnell C, Hughes PDM, Svendsen JI, Bjune AE (2020) A 24,000-year ancient DNA and pollen record from the Polar Urals reveals temporal dynamics of arctic and boreal plant communities. Quat Sci Rev 247:106564. https://doi.org/10.1016/j.quascirev.2020.106564 [DOI: 10.1016/j.quascirev.2020.106564]
Collins RA, Wangensteen OS, O’Gorman EJ, Mariani S, Sims DW, Genner MJ (2018) Persistence of environmental DNA in marine systems. Commun Biol 1:185. https://doi.org/10.1038/s42003-018-0192-6 [DOI: 10.1038/s42003-018-0192-6]
Coolen MJ (2011) 7,000 years of Emiliania huxleyi viruses in the Black Sea. Science 333:451–452. https://doi.org/10.1126/science.1200072 [DOI: 10.1126/science.1200072]
Coolen MJL, Orsi WD, Balkema C, Quince C, Harris K, Sylva SP, Filipova-Marinova M, Giosan L (2013) Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. Proc Nat Acad Sci 110:8609–8614. https://doi.org/10.1073/pnas.1219283110 [DOI: 10.1073/pnas.1219283110]
Corinaldesi C, Tangherlini M, Rastelli E, Buschi E, Lo Martire M, Danovaro R, Dell’Anno A (2019) High diversity of benthic bacterial and archaeal assemblages in deep-Mediterranean canyons and adjacent slopes. Prog Oceanogr 171:154–161. https://doi.org/10.1016/j.pocean.2018.12.014 [DOI: 10.1016/j.pocean.2018.12.014]
Crump SE, Frechette B, Power M, Cutler S, de Wet G, Raynolds MK, Raberg JH, Briner JP, Thomas EK, Sepulveda J, Shapiro B, Bunce M, Miller GH (2021) Ancient plant DNA reveals high arctic greening during the last interglacial. Proc Natl Acad Sci 118:e2019069118. https://doi.org/10.1073/pnas.2019069118 [DOI: 10.1073/pnas.2019069118]
Davidson TA, Reid MA, Sayer CD, Chilcott S (2013) Palaeolimnological records of shallow lake biodiversity change: exploring the merits of single versus multi-proxy approaches. J Paleolimnol 49:431–446. https://doi.org/10.1007/s10933-013-9696-8 [DOI: 10.1007/s10933-013-9696-8]
De Schepper S, Ray JL, Skaar KS, Sadatzki H, Ijaz UZ, Stein R, Larsen A (2019) The potential of sedimentary ancient DNA for reconstructing past sea ice evolution. ISME J 13:2566–2577. https://doi.org/10.1038/s41396-019-0457-1 [DOI: 10.1038/s41396-019-0457-1]
Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, de Vere N, Pfrender ME, Bernatchez L (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895. https://doi.org/10.1111/mec.14350 [DOI: 10.1111/mec.14350]
Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C (2012) Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol 49:953–959. https://doi.org/10.1111/j.1365-2664.2012.02171.x [DOI: 10.1111/j.1365-2664.2012.02171.x]
Domaizon I, Winegardner A, Capo E, Gauthier J, Gregory-Eaves I (2017) DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J Paleolimnol 58:1–21. https://doi.org/10.1007/s10933-017-9958-y [DOI: 10.1007/s10933-017-9958-y]
Dommain R, Andama M, McDonough MM, Prado NA, Goldhammer T, Potts R, Maldonado JE, Nkurunungi JB, Campana MG (2020) The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: a 2200-year-long metagenomic record from bwindi impenetrable Forest. Uganda Front Ecol Evol 8:218. https://doi.org/10.3389/fevo.2020.00218 [DOI: 10.3389/fevo.2020.00218]
Dulias K, Stoof-Leichsenring KR, Pestryakova LA, Herzschuh U (2017) Sedimentary DNA versus morphology in the analysis of diatom-environment relationships. J Paleolimnol 57:51–66. https://doi.org/10.1007/s10933-016-9926-y [DOI: 10.1007/s10933-016-9926-y]
Elbaz-Poulichet F, Dezileau L, Freydier R, Cossa D, Sabatier P (2011) A 3500-year record of Hg and Pb contamination in a Mediterranean sedimentary archive (The Pierre Blanche Lagoon, France). Environ Sci Technol 45:8642–8647.  https://doi.org/10.1021/es2004599 [DOI: 10.1021/es2004599]
Epp LS, Gussarova C, Boessenkool S, Olsen J, Haile J, Schroder-Nielsen A, Ludikova A, Hassel K, Stenoien HK, Funder S, Willerslev E, Kjaer K, Brochmann C (2015) Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes. Quat Sci Rev 117:152–163. https://doi.org/10.1016/j.quascirev.2015.03.027 [DOI: 10.1016/j.quascirev.2015.03.027]
Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Sci 320:1034–1039. https://doi.org/10.1126/science.1153213 [DOI: 10.1126/science.1153213]
Fritz SC, Juggins S, Battarbee RW, Engstrom DR (1991) Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352:706–708. https://doi.org/10.1038/352706a0 [DOI: 10.1038/352706a0]
Gauthier J, Walsh D, Selbie DT, Bourgeois A, Griffiths K, Domaizon I, Gregory-Eaves I (2021) Evaluating the congruence between DNA-based and morphological taxonomic approaches in water and sediment trap samples: analyses of a 36-month time series from a temperate monomictic lake. Limnol Oceanogr 66:3020–3039. https://doi.org/10.1002/lno.11856 [DOI: 10.1002/lno.11856]
Giguet-Covex C, Pansu J, Arnaud F, Rey P-J, Griggo C, Gielly L, Domaizon I, Coissac E, David F, Choler P, Poulenard J, Taberlet P (2014) Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat Commun 5:3211. https://doi.org/10.1038/ncomms4211 [DOI: 10.1038/ncomms4211]
Grossart H-P, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K (2019) Fungi in aquatic ecosystems. Nat Rev Microbiol 17:339–354. https://doi.org/10.1038/s41579-019-0175-8 [DOI: 10.1038/s41579-019-0175-8]
Hoshino T, Doi H, Uramoto GI, Wörmer L, Adhikari RR, Xiao N, Morono Y, D’Hondt S, Hinrichs K-U, Inagaki F (2020) Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci 117:27587–27597. https://doi.org/10.1073/pnas.1919139117 [DOI: 10.1073/pnas.1919139117]
Hulme M, Obermeister N, Randalls S, Borie M (2018) Framing the challenge of climate change in Nature and Science editorials. Nat Clim Chang 8:515–521. https://doi.org/10.1038/s41558-018-0174-1 [DOI: 10.1038/s41558-018-0174-1]
Jenny J-P, Koirala S, Gregory-Eaves I, Francus P, Niemann C, Ahrens B, Brovkin V, Baud A, Ojala AEK, Normandeau A, Zolitschka B, Carvalhais N (2019) Human and climate global-scale imprint on sediment transfer during the Holocene. Proc Natl Acad Sci 116:22972–22976. https://doi.org/10.1073/pnas.1908179116 [DOI: 10.1073/pnas.1908179116]
Jiang Y-J, He W, Liu W-X, Qin N, Ouyang H-L, Wang Q-M, Kong X-Z, He Q-S, Yang C, Yang B, Xu F-L (2014) The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol Indic 40:58–67. https://doi.org/10.1016/j.ecolind.2014.01.006 [DOI: 10.1016/j.ecolind.2014.01.006]
Jørgensen T, Haile J, Moller P, Andreev A, Boessenkool S, Rasmussen M, Kienast F, Coissac E, Taberlet P, Brochmann C, Bigelow NH, Andersen K, Orlando L, Gilbert MTP, Willerslev E (2012a) A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability. Mol Ecol 21:1989–2003. https://doi.org/10.1111/j.1365-294X.2011.05287.x [DOI: 10.1111/j.1365-294X.2011.05287.x]
Jørgensen T, Kjaer KH, Haile J, Rasmussen M, Boessenkool S, Andersen K, Coissac E, Taberlet P, Brochmann C, Orlando L, Gilbert MTP, Willerslev E (2012b) Islands in the ice: detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA Meta-barcoding. Mol Ecol 21:1980–1988. https://doi.org/10.1111/j.1365-294X.2011.05278.x [DOI: 10.1111/j.1365-294X.2011.05278.x]
Keck F, Millet L, Debroas D, Etienne D, Galop D, Rius D, Domaizon I (2020) Assessing the response of micro-eukaryotic diversity to the Great Acceleration using lake sedimentary DNA. Nat Commun 11:3831. https://doi.org/10.1038/s41467-020-17682-8 [DOI: 10.1038/s41467-020-17682-8]
Klobucar SL, Rodgers TW, Budy P (2017) At the forefront: evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations. Can J Fish Aquat Sci 74:2030–2034. https://doi.org/10.1139/cjfas-2017-0114 [DOI: 10.1139/cjfas-2017-0114]
Kuwae M, Tamai H, Doi H, Sakata MK, Minamoto T, Suzuki Y (2020) Sedimentary DNA tracks decadal-centennial changes in fish abundance. Commu Biol 3:558. https://doi.org/10.1038/s42003-020-01282-9 [DOI: 10.1038/s42003-020-01282-9]
Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762. https://doi.org/10.1038/ismej.2007.51 [DOI: 10.1038/ismej.2007.51]
Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322. https://doi.org/10.1023/A:1017524101783 [DOI: 10.1023/A]
Li X, Liu W, Zhang L, Sun Z (2010) Distribution of Recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance. Ecol Indic 10:880–890. https://doi.org/10.1016/j.ecolind.2010.01.012 [DOI: 10.1016/j.ecolind.2010.01.012]
Li J, Wang M-H, Ho Y-S (2011) Trends in research on global climate change: a Science Citation Index Expanded-based analysis. Glob Planet Change 77:13–20. https://doi.org/10.1016/j.gloplacha.2011.02.005 [DOI: 10.1016/j.gloplacha.2011.02.005]
Li G, Dong H, Hou W, Wang S, Jiang H, Yang J, Wu G (2016) Temporal succession of ancient phytoplankton community in Qinghai lake and implication for paleo-environmental change. Sci Rep 6:19769. https://doi.org/10.1038/srep19769 [DOI: 10.1038/srep19769]
Li F, Zhang X, Xie Y, Wang J (2019) Sedimentary DNA reveals over 150 years of ecosystem change by human activities in Lake Chao. China Environ Int 133:105214. https://doi.org/10.1016/j.envint.2019.105214 [DOI: 10.1016/j.envint.2019.105214]
Liu G, Liu Z, Li Y, Chen F, Gu B, Smoak JM (2009) Effects of fish introduction and eutrophication on the cladoceran community in Lake Fuxian, a deep oligotrophic lake in southwest China. J Paleolimnol 42:427–435. https://doi.org/10.1007/s10933-008-9286-3 [DOI: 10.1007/s10933-008-9286-3]
Liu S, Kruse S, Scherler D, Ree RH, Zimmermann HH, Stoof-Leichsenring KR, Epp LS, Mischke S, Herzschuh U (2021a) Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nat Commun 12:1–9. https://doi.org/10.1038/s41467-021-22986-4 [DOI: 10.1038/s41467-021-22986-4]
Liu Y-X, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y (2021b) A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12:315–330. https://doi.org/10.1007/s13238-020-00724-8 [DOI: 10.1007/s13238-020-00724-8]
Massilani D et al (2022) Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments. Proc Natl Acad Sci 119:e2113666118. https://doi.org/10.1073/pnas.2113666118 [DOI: 10.1073/pnas.2113666118]
Miya M (2022) Environmental DNA metabarcoding: a novel method for biodiversity monitoring of marine fish communities. Ann Rev Mar Sci 14:161–185. https://doi.org/10.1146/annurev-marine-041421-082251 [DOI: 10.1146/annurev-marine-041421-082251]
Mohiuddin M, Schellhorn H (2015) Spatial and temporal dynamics of virus occurrence in two freshwater lakes captured through metagenomic analysis. Front Microbiol 6:960. https://doi.org/10.3389/fmicb.2015.00960 [DOI: 10.3389/fmicb.2015.00960]
Møller TE, Van der Bilt WGM, Roerdink DL, Jørgensen SL (2020) Microbial community structure in arctic lake sediments reflect variations in holocene climate conditions. Front Microbiol 11:1520. https://doi.org/10.3389/fmicb.2020.01520 [DOI: 10.3389/fmicb.2020.01520]
Monchamp M-E, Walser J-C, Pomati F, Spaak P (2016) Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl Environ Microbiol 82:6472–6482. https://doi.org/10.1128/aem.02174-16 [DOI: 10.1128/aem.02174-16]
Monchamp M-E, Spaak P, Domaizon I, Dubois N, Bouffard D, Pomati F (2018) Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat Ecol Evol 2:317–324. https://doi.org/10.1038/s41559-017-0407-0 [DOI: 10.1038/s41559-017-0407-0]
More KD, Orsi WD, Galy V, Giosan L, He L, Grice K, Coolen MJL (2018) A 43 kyr record of protist communities and their response to oxygen minimum zone variability in the Northeastern Arabian Sea. Earth Planet Sci Lett 496:248–256. https://doi.org/10.1016/j.epsl.2018.05.045 [DOI: 10.1016/j.epsl.2018.05.045]
Murchie TJ, Monteath AJ, Mahony ME, Long GS, Cocker S, Sadoway T, Karpinski E, Zazula G, MacPhee RDE, Froese D, Poinar HN (2021) Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nat Commun 12:7120. https://doi.org/10.1038/s41467-021-27439-6 [DOI: 10.1038/s41467-021-27439-6]
Nakagawa S, Samarasinghe G, Haddaway NR, Westgate MJ, O’Dea RE, Noble DW, Lagisz M (2019) Research weaving: visualizing the future of research synthesis. Trends Ecol Evol 34:224–238. https://doi.org/10.1016/j.tree.2018.11.007 [DOI: 10.1016/j.tree.2018.11.007]
Nevalainen L, Rantala MV, Luoto TP (2015) Sedimentary cladoceran assemblages and their functional attributes record late Holocene climate variability in southern Finland. J Paleolimnol 54:239–252. https://doi.org/10.1007/s10933-015-9849-z [DOI: 10.1007/s10933-015-9849-z]
Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66. https://doi.org/10.1016/0167-7012(87)90025-X [DOI: 10.1016/0167-7012(87)90025-X]
Paul V (2019) DNA from Arctic lakes traces past climate impacts. Science 366:1296–1297. https://doi.org/10.1126/science.366.6471.1296 [DOI: 10.1126/science.366.6471.1296]
Pawlowski J et al (2021) Environmental DNA metabarcoding for benthic monitoring: a review of sediment sampling and DNA extraction methods. Sci Total Environ 818:151783. https://doi.org/10.1016/j.scitotenv.2021.151783 [DOI: 10.1016/j.scitotenv.2021.151783]
Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J, Hellstrom M, Spens J, Thomsen PF, Bohmann K, Cappellini E, Schnell IB, Wales NA, Carøe C, Campos PF, Schmidt AMZ, Gilbert MTP, Hansen AJ, Orlando L, Willerslev E (2015) Ancient and modern environmental DNA. Philos Trans R Soc B Biol Sci 370:20130383. https://doi.org/10.1098/rstb.2013.0383 [DOI: 10.1098/rstb.2013.0383]
Pikitch EK (2018) A tool for finding rare marine species. Sci 360:1180–1182. https://doi.org/10.1126/science.aao3787 [DOI: 10.1126/science.aao3787]
Piñol J, Senar MA, Symondson WOC (2019) The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol Ecol 28:407–419. https://doi.org/10.1111/mec.14776 [DOI: 10.1111/mec.14776]
R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rawlence NJ, Lowe DJ, Wood JR, Young JM, Churchman GJ, Huang YT, Cooper A (2014) Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects. J Quat Sci 29:610–626. https://doi.org/10.1002/jqs.2740 [DOI: 10.1002/jqs.2740]
Rigosi A, Carey CC, Ibelings BW, Brookes JD (2014) The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59:99–114. https://doi.org/10.4319/lo.2014.59.1.0099 [DOI: 10.4319/lo.2014.59.1.0099]
Rijal DP, Heintzman PD, Lammers Y, Yoccoz NG, Lorberau KE, Pitelkova I, Goslar T, Murguzur FJA, Salonen JS, Helmens KF, Bakke J, Edwards ME, Alm T, Brathen KA, Brown AG, Alsos IG (2021) Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci Adv 7:eabf9557. https://doi.org/10.1126/sciadv.abf9557 [DOI: 10.1126/sciadv.abf9557]
Ryves DB, Jewson DH, Sturm M, Battarbee RW, Flower RJ, Mackay AW, Granin NG (2003) Quantitative and qualitative relationships between planktonic diatom communities and diatom assemblages in sedimenting material and surface sediments in Lake Baikal, Siberia. Limnol Oceanogr 48:1643–1661. https://doi.org/10.4319/lo.2003.48.4.1643 [DOI: 10.4319/lo.2003.48.4.1643]
Scheckenbach F, Hausmann K, Wylezich C, Weitere M, Arndt H (2010) Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc Natl Acad Sci 107:115–120. https://doi.org/10.1073/pnas.0908816106 [DOI: 10.1073/pnas.0908816106]
Singh P, Raghukumar C, Verma P, Shouche Y (2012) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667. https://doi.org/10.1007/s11274-011-0859-3 [DOI: 10.1007/s11274-011-0859-3]
Strickler KM, Fremier AK, Goldberg CS (2015) Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol Conserv 183:85–92. https://doi.org/10.1016/j.biocon.2014.11.038 [DOI: 10.1016/j.biocon.2014.11.038]
Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14. https://doi.org/10.1093/nar/gkl938 [DOI: 10.1093/nar/gkl938]
Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x [DOI: 10.1111/j.1365-294X.2012.05470.x]
Talas L, Stivrins N, Veski S, Tedersoo L, Kisand V (2021) Sedimentary Ancient DNA (sedaDNA) Reveals fungal diversity and environmental drivers of community changes throughout the Holocene in the present boreal Lake Lielais Svetinu (Eastern Latvia). Microorganisms 9:719. https://doi.org/10.3390/microorganisms9040719 [DOI: 10.3390/microorganisms9040719]
Tao J, Che R, He D, Yan Y, Sui X, Chen Y (2015) Trends and potential cautions in food web research from a bibliometric analysis. Sci 105:435–447. https://doi.org/10.1007/s11192-015-1679-2 [DOI: 10.1007/s11192-015-1679-2]
Tonno I, Talas L, Freiberg R, Kisand A, Belle S, Stivrins N, Alliksaar T, Heinsalu A, Veski S, Kisand V (2021) Environmental drivers and abrupt changes of phytoplankton community in temperate lake Lielais Svetinu, Eastern Latvia, over the last Post-Glacial period from 14.5 kyr. Quat Sci Rev 263:107006. https://doi.org/10.1016/j.quascirev.2021.107006 [DOI: 10.1016/j.quascirev.2021.107006]
Tse TJ, Doig LE, Tang S, Zhanz X, Sun W, Wiseman SB, Feng CX, Liu H, Giesy JP, Hecker M, Jones PD (2018) Combining high-throughput sequencing of sedaDNA and traditional paleolimnological techniques to infer historical trends in cyanobacterial communities. Environ Sci Technol 52:6842–6853. https://doi.org/10.1021/acs.est.7b06386 [DOI: 10.1021/acs.est.7b06386]
Velle G, Brooks SJ, Birks HJB, Willassen E (2005) Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quat Sci Rev 24:1429–1462. https://doi.org/10.1016/j.quascirev.2004.10.010 [DOI: 10.1016/j.quascirev.2004.10.010]
Voldstad LH, Alsos IG, Farnsworth WR, Heintzman PD, Hakansson L, Kjellman SE, Rouillard A, Schomacker A, Eidesen PB (2020) A complete Holocene lake sediment ancient DNA record reveals long-standing high Arctic plant diversity hotspot in northern Svalbard. Quat Sci Rev 234:106207. https://doi.org/10.1016/j.quascirev.2020.106207 [DOI: 10.1016/j.quascirev.2020.106207]
Vuillemin A, Wankel SD, Coskun ÖK, Magritsch T, Vargas S, Estes ER, Spivack AJ, Smith DC, Pockalny R, Murray RW, D’Hondt S, Orsi WD (2019) Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv 5:eaaw4108. https://doi.org/10.1126/sciadv.aaw4108 [DOI: 10.1126/sciadv.aaw4108]
Vuillemin A, Ariztegui D, Horn F, Kallmeyer J, Orsi WD, Team tPS (2018) Microbial community composition along a 50 000-year lacustrine sediment sequence. FEMS Microbiol Ecol 94:fiy029. https://doi.org/10.1093/femsec/fiy029 [DOI: 10.1093/femsec/fiy029]
Wang Q, Yang X, Anderson NJ, Zhang E, Li Y (2014) Diatom response to climate forcing of a deep, alpine lake (Lugu Hu, Yunnan, SW China) during the Last Glacial Maximum and its implications for understanding regional monsoon variability. Quat Sci Rev 86:1–12. https://doi.org/10.1016/j.quascirev.2013.12.024 [DOI: 10.1016/j.quascirev.2013.12.024]
Wang P, Yan Z, Yang S, Wang S, Zheng X, Fan J, Zhang T (2019) Environmental DNA: an emerging tool in ecological assessment. Bull Environ Contam Toxicol 103:651–656. https://doi.org/10.1007/s00128-019-02720-z [DOI: 10.1007/s00128-019-02720-z]
Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal genetic records from holocene and pleistocene sediments. Sci 300:791–795. https://doi.org/10.1126/science.1084114 [DOI: 10.1126/science.1084114]
Yan Y, Wang L, Li J, Li J, Zou Y, Zhang J, Li P, Liu Y, Xu B, Gu Z, Wan X (2018) Diatom response to climatic warming over the last 200years: a record from Gonghai Lake, North China. Palaeogeogr Palaeoclimatol Palaeoecol 495:48–59. https://doi.org/10.1016/j.palaeo.2017.12.023 [DOI: 10.1016/j.palaeo.2017.12.023]
Yang J, Zhang X (2020) eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems. Environ Int 134:105230. https://doi.org/10.1016/j.envint.2019.105230 [DOI: 10.1016/j.envint.2019.105230]
Yang S, Yuan M, Yang Q, Huang J, Sun M, Sun J, Qu K, Sun Y (2019) Coccolithophore responses to the Pacific Decadal Oscillation in the East China Sea region of the Northwest Pacific from ad 1901 to 2013. J Quat Sci 34:333–341. https://doi.org/10.1002/jqs.3105 [DOI: 10.1002/jqs.3105]
Yao T, Xiang S, Zhang X, Wang N, Wang Y (2006) Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Global Biogeochem Cycles 20:GB1004. https://doi.org/10.1029/2004GB002424 [DOI: 10.1029/2004GB002424]
Zavala EI, Jacobs Z, Vernot B, Shunkov MV, Kozlikin MB, Derevianko AP, Essel E, de Fillipo C, Nagel S, Richter J, Romagne F, Schmidt A, Li B, O’Gorman K, Slon V, Kelso J, Paabo S, Roberts RG, Meyer M (2021) Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave. Nature 595:399–403. https://doi.org/10.1038/s41586-021-03675-0 [DOI: 10.1038/s41586-021-03675-0]
Zhang H, Huo S, Wang R, Xiao Z, Li X, Wu F (2021) Hydrologic and nutrient-driven regime shifts of cyanobacterial and eukaryotic algal communities in a large shallow lake: evidence from empirical state indicator and ecological network analyses. Sci Total Environ 783:147059. https://doi.org/10.1016/j.scitotenv.2021.147059 [DOI: 10.1016/j.scitotenv.2021.147059]
Zheng X, Liu W, Dai X, Zhu Y, Wang J, Zhu Y, Zheng H, Huang Y, Dong Z, Du W, Zhao F, Huang L (2021) Extraordinary diversity of viruses in deep-sea sediments as revealed by metagenomics without prior virion separation. Environ Microbiol 23:728–743. https://doi.org/10.1111/1462-2920.15154 [DOI: 10.1111/1462-2920.15154]
Zhu L, Peng P, Xie M, Wang J, Frenzel P, Wrozyna C, Schwalb A (2010) Ostracod-based environmental reconstruction over the last 8,400 years of Nam Co Lake on the Tibetan plateau. Hydrobiologia 648:157–174. https://doi.org/10.1007/s10750-010-0149-3 [DOI: 10.1007/s10750-010-0149-3]
Zimmermann HH, Raschke E, Epp LS, Stoof-Leichsenring KR, Schwamborn G, Schirrmeister L, Overduin PP, Herzschuh U (2017) Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). Biogeosci 14:575–596. https://doi.org/10.5194/bg-14-575-2017 [DOI: 10.5194/bg-14-575-2017]
Zimmermann HH, Stoof-Leichsenring KR, Kruse S, Mueller J, Stein R, Tiedemann R, Herzschuh U (2020) Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years. Ocean Sci 16:1017–1032. https://doi.org/10.5194/os-16-1017-2020 [DOI: 10.5194/os-16-1017-2020]
Zinger L, Gobet A, Pommier T (2012) Two decades of describing the unseen majority of aquatic microbial diversity. Mol Ecol 21:1878–1896. https://doi.org/10.1111/j.1365-294X.2011.05362.x [DOI: 10.1111/j.1365-294X.2011.05362.x]
Zyoud SeH (2016) Global research trends of Middle East respiratory syndrome coronavirus: a bibliometric analysis. BMC Infect Dis 16:255. https://doi.org/10.1186/s12879-016-1600-5 [DOI: 10.1186/s12879-016-1600-5]

Grants

  1. 41820104008/National Natural Science Foundation of China
  2. 42201172/National Natural Science Foundation of China

MeSH Term

Geologic Sediments
Biodiversity
DNA
Eukaryota
Ecosystem

Chemicals

DNA

Word Cloud

Similar Articles

Cited By