Jeong Yeon Kim, Hongui Cha, Kyeonghui Kim, Changhwan Sung, Jinhyeon An, Hyoeun Bang, Hyungjoo Kim, Jin Ok Yang, Suhwan Chang, Incheol Shin, Seung-Jae Noh, Inkyung Shin, Dae-Yeon Cho, Se-Hoon Lee, Jung Kyoon Choi
Jurtz, V. et al. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017).
[DOI:
10.4049/jimmunol.1700893]
O’Donnell, T. J., Rubinsteyn, A. & Laserson, U. MHCflurry 2.0: improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst. 11, 42–48 (2020).
[DOI:
10.1016/j.cels.2020.06.010]
Bassani-Sternberg, M. et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput. Biol. 13, 1–28 (2017).
[DOI:
10.1371/journal.pcbi.1005725]
Racle, J. et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol. 37, 1283–1286 (2019).
[DOI:
10.1038/s41587-019-0289-6]
Chen, B. et al. Predicting HLA class II antigen presentation through integrated deep learning. Nat. Biotechnol. 37, 1332–1343 (2019).
[DOI:
10.1038/s41587-019-0280-2]
Kathuria, K. R. et al. Maria-I: a deep-learning approach for accurate prediction of MHC Class I tumor neoantigen presentation. Blood 134, 84 (2019).
[DOI:
10.1182/blood-2019-129334]
Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).
[DOI:
10.1038/nrc.2016.36]
Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).
[DOI:
10.1038/nature13988]
Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).
[DOI:
10.1038/nature14001]
Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).
[DOI:
10.1126/science.aad1253]
Wells, D. K. et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183, 818–834 (2020).
[DOI:
10.1016/j.cell.2020.09.015]
Luksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).
[DOI:
10.1038/nature24473]
Kim, K. et al. Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat. Commun. 11, 951 (2020).
[DOI:
10.1038/s41467-020-14562-z]
Sharon, E. et al. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat. Genet. 48, 995–1002 (2016).
[DOI:
10.1038/ng.3625]
Hellmann, M. D. et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33, 843–852 (2018).
[DOI:
10.1016/j.ccell.2018.03.018]
Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).
[DOI:
10.1126/science.aaa1348]
Anagnostou, V. et al. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat. Cancer 1, 99–111 (2020).
[DOI:
10.1038/s43018-019-0008-8]
Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).
[DOI:
10.1126/science.aad0095]
Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell 171, 934–949 (2017).
[DOI:
10.1016/j.cell.2017.09.028]
Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).
[DOI:
10.1056/NEJMoa1406498]
Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).
[DOI:
10.1016/j.cell.2016.02.065]
Roh, W. et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci. Transl. Med. 9, eaah3560 (2017).
[DOI:
10.1126/scitranslmed.aah3560]
Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).
[DOI:
10.1038/s41467-017-01062-w]
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).
[DOI:
10.1016/j.cell.2018.10.038]
Anagnostou, V. et al. Integrative tumor and immune cell multi-omic analyses predict response to immune checkpoint blockade in melanoma. Cell Rep. Med. 1, 100139 (2020).
[DOI:
10.1016/j.xcrm.2020.100139]
Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).
[DOI:
10.1038/nature25501]
Snyder, A. et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med. 14, e1002309 (2017).
[DOI:
10.1371/journal.pmed.1002309]
Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).
[DOI:
10.1126/science.aan5951]
Schmidt, J. et al. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep. Med. 2, 100194 (2021).
[DOI:
10.1016/j.xcrm.2021.100194]
Lee, M. N. & Meyerson, M. Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells. Sci. Immunol. 6, eabf4001 (2021).
[DOI:
10.1126/sciimmunol.abf4001]
Stryhn, A. et al. A systematic, unbiased mapping of CD8 and CD4 T cell epitopes in yellow fever vaccinees. Front. Immunol. 11, 1836 (2020).
[DOI:
10.3389/fimmu.2020.01836]
Grifoni, A. et al. Characterization of magnitude and antigen specificity of HLA-DP, DQ, and DRB3/4/5 restricted DENV-specific CD4 T cell responses. Front. Immunol. 10, 1568 (2019).
[DOI:
10.3389/fimmu.2019.01568]
Ferrari, V. et al. In vitro induction of neoantigen-specific T cells in myelodysplastic syndrome, a disease with low mutational burden. Cytotherapy 23, 320–328 (2021).
[DOI:
10.1016/j.jcyt.2020.10.003]
Parn, S., Jabbour, G., Nguyenkhoa, V. & Dakshanamurthy, S. Design of peptide vaccine for COVID19: CD8 and CD4 T cell epitopes from SARS-CoV-2 open-reading-frame protein variants. Preprint at bioRxiv https://doi.org/10.1101/2021.09.21.461301 (2021).
Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).
[DOI:
10.1126/science.aaa4971]
Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614 (2021).
[DOI:
10.1016/j.cell.2021.01.002]
McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).
[DOI:
10.1126/science.aaf1490]
Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).
[DOI:
10.1016/j.cell.2014.12.033]
Zapata, L. et al. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol. 19, 67 (2018).
[DOI:
10.1186/s13059-018-1434-0]
Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).
[DOI:
10.1038/nature07205]
Weghorn, D. & Sunyaev, S. Bayesian inference of negative and positive selection in human cancers. Nat. Genet. 49, 1785–1788 (2017).
[DOI:
10.1038/ng.3987]
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 (2017).
[DOI:
10.1016/j.cell.2017.09.042]
Ng, P. C. & Henikoff, S. Predicting deleterious amino acid substitutions predicting deleterious amino acid substitutions. Genome Res. 11, 863–874 (2001).
[DOI:
10.1101/gr.176601]
Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet., https://doi.org/10.1002/0471142905.hg0720s76 (2013).
[DOI:
10.1002/0471142905.hg0720s76]
Tokheim, C. & Karchin, R. CHASMplus reveals the scope of somatic missense mutations driving human cancers. Cell Syst. 9, 9–23 (2019).
[DOI:
10.1016/j.cels.2019.05.005]
Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 10, 25 (2018).
[DOI:
10.1186/s13073-018-0531-8]
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating suppression and promotion. Science 331, 1565–1570 (2011).
[DOI:
10.1126/science.1203486]
O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).
[DOI:
10.1038/s41571-018-0142-8]
Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).
[DOI:
10.1016/j.coi.2014.01.004]
Van den Eynden, J., Jiménez-Sánchez, A., Miller, M. L. & Larsson, E. Lack of detectable neoantigen depletion signals in the untreated cancer genome. Nat. Genet. 51, 1741–1748 (2019).
[DOI:
10.1038/s41588-019-0532-6]
Wang, S. et al. Revisiting neoantigen depletion signal in the untreated cancer genome. Preprint at bioRxiv https://doi.org/10.1101/2020.05.11.089540 (2020).
Marty, R. et al. MHC-I genotype restricts the oncogenic mutational landscape. Cell 171, 1272–1283 (2017).
[DOI:
10.1016/j.cell.2017.09.050]
Marty, R., Thompson, W. K., Salem, R. M., Zanetti, M. & Carter, H. Evolutionary pressure against MHC Class II binding cancer mutations. Cell 175, 416–428 (2018).
[DOI:
10.1016/j.cell.2018.08.048]
Oh, D. Y. et al. Intratumoral CD4 T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612–1625 (2020).
[DOI:
10.1016/j.cell.2020.05.017]
Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).
[DOI:
10.1038/s41586-019-1671-8]
Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).
[DOI:
10.1038/nature23003]
Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).
[DOI:
10.1038/nature22991]
Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).
[DOI:
10.1038/s41586-018-0810-y]
Fang, Y. et al. A pan-cancer clinical study of personalized neoantigen vaccine monotherapy in treating patients with various types of advanced solid tumors. Clin. Cancer Res. Clincancers 26, 4511–4520 (2020).
[DOI:
10.1158/1078-0432.CCR-19-2881]
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).
[DOI:
10.1093/nar/gky1006]
Tung, C.-W., Ziehm, M., Kämper, A., Kohlbacher, O. & Ho, S.-Y. POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinf. 12, 446 (2011).
[DOI:
10.1186/1471-2105-12-446]
Lata, S., Bhasin, M. & Raghava, G. P. S. MHCBN 4.0: a database of MHC/TAP binding peptides and T-cell epitopes. BMC Res. Notes 2, 61 (2009).
[DOI:
10.1186/1756-0500-2-61]
Wick, D. A. et al. Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancer. Clin. Cancer Res. 20, 1125–1134 (2014).
[DOI:
10.1158/1078-0432.CCR-13-2147]
Cohen, C. J. et al. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67, 3898–3903 (2007).
[DOI:
10.1158/0008-5472.CAN-06-3986]
Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013).
[DOI:
10.1038/nm.3161]
Lu, Y.-C. et al. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin. Cancer Res. 20, 3401–3410 (2014).
[DOI:
10.1158/1078-0432.CCR-14-0433]
Kalaora, S. et al. Combined analysis of antigen presentation and T-cell recognition reveals restricted immune responses in melanoma. Cancer Discov. 8, 1366–1375 (2018).
[DOI:
10.1158/2159-8290.CD-17-1418]
Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).
[DOI:
10.1038/nm.4051]
Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).
[DOI:
10.1126/science.aan6733]
Calis, J. J. A. et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 9, e1003266 (2013).
[DOI:
10.1371/journal.pcbi.1003266]
Carreno, B. M. et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).
[DOI:
10.1126/science.aaa3828]
Matsuda, T. et al. Induction of neoantigen-specific cytotoxic T cells and construction of T-cell receptor-engineered T cells for ovarian cancer. Clin. Cancer Res. 24, 5357–5367 (2018).
[DOI:
10.1158/1078-0432.CCR-18-0142]
Croft, N. P. et al. Most viral peptides displayed by class I MHC on infected cells are immunogenic. Proc. Natl Acad. Sci. USA 116, 3112–3117 (2019).
[DOI:
10.1073/pnas.1815239116]
Wang, M. et al. Identification of an HLA-A*0201 restricted Bcl2-derived epitope expressed on tumors. Cancer Lett. 251, 86–95 (2007).
[DOI:
10.1016/j.canlet.2006.11.004]
Sabatino, D. E. et al. Identification of the AAV2 capsid CD8 T cell epitope in C57BL/6 mice. Blood 104, 3188 (2004).
[DOI:
10.1182/blood.V104.11.3188.3188]
Karandikar, S.H. et al. Identification of epitopes in ovalbumin that provide insights for cancer neoepitopes. JCI Insight 4, e127882 (2019).
[DOI:
10.1172/jci.insight.127882]
Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8+T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9, 1092 (2018).
[DOI:
10.1038/s41467-018-03301-0]
Jha, A. N., Vishveshwara, S. & Banavar, J. R. Amino acid interaction preferences in proteins. Protein Sci. 19, 603–616 (2010).
[DOI:
10.1002/pro.339]
Pedregosa, F. et al. SciKit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Osorio, D., Rondón-Villarreal, P. & Torres Sáez, R. Peptides: a package for data mining of antimicrobial peptides. R J. 7, 4–14 (2015).
[DOI:
10.32614/RJ-2015-001]
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
[DOI:
10.1093/bioinformatics/btp324]
McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
[DOI:
10.1101/gr.107524.110]
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
[DOI:
10.1038/nbt.2514]
Hundal, J. et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8, 11 (2016).
[DOI:
10.1186/s13073-016-0264-5]
Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).
[DOI:
10.1038/nbt.3344]
Kawaguchi, S., Higasa, K., Shimizu, M., Yamada, R. & Matsuda, F. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38, 788–797 (2017).
[DOI:
10.1002/humu.23230]
Schwartz, L. H. et al. RECIST 1.1—update and clarification: from the RECIST committee. Eur. J. Cancer https://doi.org/10.1016/j.ejca.2016.03.081 (2016).
[DOI:
10.1016/j.ejca.2016.03.081]
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).
[DOI:
10.1093/nar/gkaa379]
Therneau, T. M. A package for survival analysis in R. https://CRAN.R-project.org/package=survival (2022).
Kassambara, A., Kosinski, M. & Biecek, P. R package survminer version 0.4.8: drawing survival curves using ‘ggplot2’. https://www.semanticscholar.org/paper/Drawing-Survival-Curves-using-%27ggplot2%27-%5BR-package-Kassambara-Kosinski/f6af125d765dae90c2092b46012bf0a6de1dbf35 (2020).
Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 12, e1004873 (2016).
[DOI:
10.1371/journal.pcbi.1004873]
Gillis, S. & Roth, A. PyClone-VI: scalable inference of clonal population structures using whole genome data. BMC Bioinf. 21, 571 (2020).
[DOI:
10.1186/s12859-020-03919-2]
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
[DOI:
10.1093/bioinformatics/btu170]
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
[DOI:
10.1093/bioinformatics/bts611]
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, https://doi.org/10.1093/bioinformatics/bts635 (2013).
[DOI:
10.1093/bioinformatics/bts635]
Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
[DOI:
10.1093/bioinformatics/btu638]
Pedregosa, F. et al. Scikit-learn: machine learning in {P}ython. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Boegel, S. et al. HLA typing from RNA-Seq sequence reads. Genome Med. 4, 102 (2012).
[DOI:
10.1186/gm403]
Jerome, A., Hastie, T., Simon, N. & Tibshirani, R. Package ‘glmnet’. https://mran.microsoft.com/snapshot/2017-05-03/web/packages/glmnet/glmnet.pdf (2017).