Chen-Yang Tang, Xiaohu Zhang, Xiao Xu, Shijie Sun, Changjun Peng, Meng-Huan Song, Chaochao Yan, Huaqin Sun, Mingfeng Liu, Liang Xie, Shu-Jin Luo, Jia-Tang Li
BACKGROUND: Reptiles exhibit a wide variety of skin colors, which serve essential roles in survival and reproduction. However, the molecular basis of these conspicuous colors remains unresolved.
RESULTS: We investigate color morph-enriched Asian vine snakes (Ahaetulla prasina), to explore the mechanism underpinning color variations. Transmission electron microscopy imaging and metabolomics analysis indicates that chromatophore morphology (mainly iridophores) is the main basis for differences in skin color. Additionally, we assemble a 1.77-Gb high-quality chromosome-anchored genome of the snake. Genome-wide association study and RNA sequencing reveal a conservative amino acid substitution (p.P20S) in SMARCE1, which may be involved in the regulation of chromatophore development initiated from neural crest cells. SMARCE1 knockdown in zebrafish and immunofluorescence verify the interactions among SMARCE1, iridophores, and tfec, which may determine color variations in the Asian vine snake.
CONCLUSIONS: This study reveals the genetic associations of color variation in Asian vine snakes, providing insights and important resources for a deeper understanding of the molecular and genetic mechanisms related to reptilian coloration.
Cell. 2018 Nov 15;175(5):1272-1288.e20
[PMID:
30343899]
Genetica. 2014 Aug;142(4):361-70
[PMID:
25060951]
Bioinformatics. 2008 Mar 1;24(5):637-44
[PMID:
18218656]
Mol Ecol. 2010 Dec;19(23):5101-25
[PMID:
21040047]
Bioinformatics. 2018 Sep 1;34(17):i884-i890
[PMID:
30423086]
Nat Methods. 2020 Feb;17(2):155-158
[PMID:
31819265]
J Morphol. 2018 Jan;279(1):27-36
[PMID:
28922458]
Nat Commun. 2015 Mar 10;6:6368
[PMID:
25757068]
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5633-5642
[PMID:
30819892]
Bioinformatics. 2010 Apr 1;26(7):889-95
[PMID:
20164152]
DNA Res. 2017 Feb 1;24(1):51-58
[PMID:
28028039]
Science. 1979 Feb 2;203(4379):410-5
[PMID:
760198]
Bioinformatics. 2009 Jul 15;25(14):1754-60
[PMID:
19451168]
Nat Commun. 2020 Dec 15;11(1):6391
[PMID:
33319779]
Ecol Evol. 2017 Sep 07;7(20):8262-8272
[PMID:
29075447]
PLoS Genet. 2011 Sep;7(9):e1002265
[PMID:
21909283]
Nucleic Acids Res. 2016 May 19;44(9):e89
[PMID:
26893356]
Nucleic Acids Res. 2010 Dec;38(22):e199
[PMID:
20880995]
OMICS. 2012 May;16(5):284-7
[PMID:
22455463]
Development. 2003 Jun;130(12):2809-18
[PMID:
12736222]
Genome Biol. 2014;15(12):550
[PMID:
25516281]
Nucleic Acids Res. 1997 Mar 1;25(5):955-64
[PMID:
9023104]
Gigascience. 2015 Feb 25;4:7
[PMID:
25722852]
Mol Biol Evol. 2021 Mar 9;38(3):1122-1136
[PMID:
33212507]
Nat Biotechnol. 2019 Aug;37(8):907-915
[PMID:
31375807]
Proteins. 2004 Dec 1;57(4):702-10
[PMID:
15476259]
J Cell Biol. 1974 Aug;62(2):295-304
[PMID:
4139162]
Dev Dyn. 2011 Nov;240(11):2529-38
[PMID:
21932325]
Pigment Cell Res. 2007 Feb;20(1):14-26
[PMID:
17250544]
Development. 2020 Jul 13;147(21):
[PMID:
32541011]
Cancer Res. 2010 Jun 1;70(11):4402-11
[PMID:
20460533]
Development. 1994 Mar;120(3):495-503
[PMID:
8162850]
Nucleic Acids Res. 1999 Jan 15;27(2):573-80
[PMID:
9862982]
Front Plant Sci. 2016 Sep 13;7:1350
[PMID:
27679641]
Cell. 2017 Oct 5;171(2):427-439.e21
[PMID:
28985565]
Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):492-8
[PMID:
9435219]
Nature. 2021 Aug;596(7873):583-589
[PMID:
34265844]
Science. 2020 Feb 21;367(6480):875-881
[PMID:
32001526]
FEBS Lett. 2016 Jun;590(11):1555-69
[PMID:
27149204]
Nat Biotechnol. 2015 Mar;33(3):290-5
[PMID:
25690850]
Trends Genet. 2010 May;26(5):231-9
[PMID:
20381892]
Mol Biol Evol. 2017 Aug 1;34(8):1924-1935
[PMID:
28431132]
Dev Dyn. 1995 Jul;203(3):253-310
[PMID:
8589427]
BMC Dev Biol. 2010 May 18;10:52
[PMID:
20482793]
Oncogene. 2010 Jan 7;29(1):81-92
[PMID:
19784067]
Bioinformatics. 2020 Apr 1;36(7):2253-2255
[PMID:
31778144]
Pigment Cell Melanoma Res. 2013 Jan;26(1):29-38
[PMID:
23082932]
J Biol Chem. 2010 Feb 5;285(6):4243-4250
[PMID:
20007318]
Bioinformatics. 2000 Nov;16(11):1040-1
[PMID:
11159316]
Nat Protoc. 2008;3(1):59-69
[PMID:
18193022]
Bioinformatics. 2011 Aug 1;27(15):2156-8
[PMID:
21653522]
PLoS One. 2013 Jul 09;8(7):e67801
[PMID:
23874447]
PLoS One. 2012;7(10):e46688
[PMID:
23056405]
Nat Methods. 2012 Mar 04;9(4):357-9
[PMID:
22388286]
Fly (Austin). 2012 Apr-Jun;6(2):80-92
[PMID:
22728672]
Evolution. 2004 Aug;58(8):1794-808
[PMID:
15446431]
Semin Cell Dev Biol. 2013 Jun-Jul;24(6-7):529-41
[PMID:
23578866]
Bioinformatics. 2013 Jan 1;29(1):15-21
[PMID:
23104886]
Science. 2017 Aug 4;357(6350):
[PMID:
28774901]
BMC Biol. 2013 Oct 07;11:105
[PMID:
24099066]
Genome Biol. 2023 Mar 9;24(1):46
[PMID:
36895044]
Cell Res. 2017 Jul;27(7):954-957
[PMID:
28281538]
Biol Open. 2014 May 23;3(6):503-9
[PMID:
24857848]
PLoS Genet. 2018 Oct 4;14(10):e1007402
[PMID:
30286071]
Sci Adv. 2022 Mar 11;8(10):eabm2387
[PMID:
35263124]
Genome Biol. 2008 Jan 11;9(1):R7
[PMID:
18190707]
PLoS One. 2021 Jan 13;16(1):e0244794
[PMID:
33439865]
Dev Biol. 2009 Aug 15;332(2):408-17
[PMID:
19527705]
J Morphol. 2013 Dec;274(12):1353-64
[PMID:
23913439]
Bioinformatics. 2009 Aug 15;25(16):2078-9
[PMID:
19505943]
Zoology (Jena). 2017 Apr;121:83-90
[PMID:
27939816]
Dev Biol. 2016 Mar 1;411(1):15-24
[PMID:
26806701]
Dev Biol. 1974 Feb;36(2):245-51
[PMID:
4814566]
Dev Dyn. 2006 Oct;235(10):2722-35
[PMID:
16894598]
J Dev Biol. 2018 Sep 26;6(4):
[PMID:
30261583]
Bioinformatics. 2013 Nov 15;29(22):2933-5
[PMID:
24008419]
Int J Mol Sci. 2015 Sep 07;16(9):21310-29
[PMID:
26370964]
Nucleic Acids Res. 2007;35(9):3100-8
[PMID:
17452365]
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26307-26317
[PMID:
33020272]
Sci Rep. 2018 Oct 18;8(1):15369
[PMID:
30337622]