C.R. Leemans, P.J.F. Snijders, R.H. Brakenhoff, The molecular landscape of head and neck cancer. Nat. Rev. Cancer 18, 269–282 (2018)
[DOI:
10.1038/nrc.2018.11]
S.B. Chinn, J.N. Myers, Oral cavity carcinoma: current management, controversies, and future directions. J. Clin. Oncol. 33, 3269–3276 (2015)
[DOI:
10.1200/JCO.2015.61.2929]
J.D. Cramer, B. Burtness, Q.T. Le, R.L. Ferris, The changing therapeutic landscape of head and neck cancer. Nat. Rev. Clin. Oncol. 16, 669–683 (2019)
[DOI:
10.1038/s41571-019-0227-z]
C.R. Leemans, B.J. Braakhuis, R.H. Brakenhoff, The molecular biology of head and neck cancer. Nat. Rev. Cancer 11, 9–22 (2011)
[DOI:
10.1038/nrc2982]
M.L. Hedberg et al., Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J. Clin. Invest. 126, 169–180 (2016)
[DOI:
10.1172/JCI82066]
N. Stransky et al., The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011)
[DOI:
10.1126/science.1208130]
J. Nieminuszczy, E. Grzesiuk, Bacterial DNA repair genes and their eukaryotic homologues: 3. AlkB dioxygenase and Ada methyltransferase in the direct repair of alkylated DNA. Acta Biochim. Pol 54, 459–468 (2007)
[DOI:
10.18388/abp.2007_3221]
R. Ougland, T. Rognes, A. Klungland, E. Larsen, Non-homologous functions of the AlkB homologs. J. Mol. Cell. Biol. 7, 494–504 (2015)
[DOI:
10.1093/jmcb/mjv029]
V. Rajecka, T. Skalicky, S. Vanacova, The role of RNA adenosine demethylases in the control of gene expression. Biochim. et Biophys. Acta (BBA)-Gene Regul. Mech. 1862, 343–355 (2019)
[DOI:
10.1016/j.bbagrm.2018.12.001]
A. Tan, Y. Dang, G. Chen, Z. Mo, Overexpression of the fat mass and obesity associated gene (FTO) in breast cancer and its clinical implications. Int. J. Clin. Exp. Pathol 8, 13405 (2015)
[PMID:
26722548]
B. Singh et al., Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PloS one 11, e0159072 (2016)
[DOI:
10.1371/journal.pone.0159072]
I. Yamato et al., PCA-1/ALKBH3 contributes to pancreatic Cancer by supporting apoptotic resistance and AngiogenesisPCA-1/ALKBH3 in pancreatic Cancer. Cancer Res 72, 4829–4839 (2012)
[DOI:
10.1158/0008-5472.CAN-12-0328]
S. Zhou et al., FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β‐catenin through mRNA demethylation. Mol. Carcinog 57, 590–597 (2018)
[DOI:
10.1002/mc.22782]
T.-C.A. Johannessen et al., The DNA repair protein ALKBH2 mediates temozolomide resistance in human glioblastoma cells. Neuro-oncology 15, 269–278 (2013)
[DOI:
10.1093/neuonc/nos301]
V. Kaklamani et al., The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med. Genet 12, 1–10 (2011)
[DOI:
10.1186/1471-2350-12-52]
S. Lee et al., TP53 regulates human AlkB homologue 2 expression in glioma resistance to photofrin-mediated photodynamic therapy. Br. J. Cancer 103, 362–369 (2010)
[DOI:
10.1038/sj.bjc.6605797]
T. Fujii, K. Shimada, S. Anai, K. Fujimoto, N. Konishi, ALKBH 2, a novel a lk B homologue, contributes to human bladder cancer progression by regulating MUC 1 expression. Cancer Sci 104, 321–327 (2013)
[DOI:
10.1111/cas.12089]
J. Wang et al., Leukemogenic chromatin alterations promote AML Leukemia Stem cells via a KDM4C-ALKBH5-AXL Signaling Axis. Cell. Stem Cell. 27, 81–97 e88 (2020)
[DOI:
10.1016/j.stem.2020.04.001]
C.L. Xiao et al., N(6)-Methyladenine DNA modification in the Human Genome. Mol. Cell. 71, 306–318 e307 (2018)
[DOI:
10.1016/j.molcel.2018.06.015]
L.F. Tian et al., Structural basis of nucleic acid recognition and 6mA demethylation by human ALKBH1. Cell. Res. 30, 272–275 (2020)
[DOI:
10.1038/s41422-019-0233-9]
C. Shen, K. Wang, X. Deng, J. Chen, DNA N(6)-methyldeoxyadenosine in mammals and human disease. Trends Genet. 38, 454–467 (2022)
[DOI:
10.1016/j.tig.2021.12.003]
L. Ouyang et al., ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease. J Clin Invest 131 (2021)
Y. Liu et al., DNA demethylase ALKBH1 promotes adipogenic differentiation via regulation of HIF-1 signaling. J. Biol. Chem. 298, 101499 (2022)
[DOI:
10.1016/j.jbc.2021.101499]
E. Driehuis et al., Oral mucosal organoids as a potential platform for Personalized Cancer Therapy. Cancer Discov 9, 852–871 (2019)
[DOI:
10.1158/2159-8290.CD-18-1522]
Q. Xie et al., N(6)-methyladenine DNA modification in Glioblastoma. Cell 175, 1228–1243 e1220 (2018)
[DOI:
10.1016/j.cell.2018.10.006]
C.R. Alarcon et al., HNRNPA2B1 is a mediator of m(6)A-Dependent Nuclear RNA Processing events. Cell 162, 1299–1308 (2015)
[DOI:
10.1016/j.cell.2015.08.011]
T.P. Wu et al., DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016)
[DOI:
10.1038/nature17640]
M. Zhang et al., Mammalian ALKBH1 serves as an N(6)-mA demethylase of unpairing DNA. Cell. Res. 30, 197–210 (2020)
[DOI:
10.1038/s41422-019-0237-5]
E.M. Payne et al., Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML. Blood 118, 903–915 (2011)
[DOI:
10.1182/blood-2010-11-318022]
K. Hotta et al., Clinical significance and therapeutic potential of prostate cancer antigen-1/ALKBH3 in human renal cell carcinoma. Oncol. Rep 34, 648–654 (2015)
[DOI:
10.3892/or.2015.4017]
D. Xu et al., FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol. Rep 38, 2285–2292 (2017)
[DOI:
10.3892/or.2017.5904]
X. Li et al., The exploration of N6-deoxyadenosine methylation in mammalian genomes. Protein Cell. 12, 756–768 (2021)
[DOI:
10.1007/s13238-021-00866-3]
K. Boulias, E.L. Greer, Means, mechanisms and consequences of adenine methylation in DNA. Nat. Rev. Genet. 23, 411–428 (2022)
[DOI:
10.1038/s41576-022-00456-x]
K.J. Wu, The epigenetic roles of DNA N(6)-Methyladenine (6mA) modification in eukaryotes. Cancer Lett. 494, 40–46 (2020)
[DOI:
10.1016/j.canlet.2020.08.025]
C. Ma et al., N6-methyldeoxyadenine is a transgenerational epigenetic signal for mitochondrial stress adaptation. Nat. Cell. Biol. 21, 319–327 (2019)
[DOI:
10.1038/s41556-018-0238-5]
N. Chen, G. Zhang, J. Fu, Q. Wu, Identification of key modules and hub genes involved in esophageal squamous cell Carcinoma Tumorigenesis using WCGNA. Cancer Control 27, 1073274820978817 (2020)
[DOI:
10.1177/1073274820978817]
W.L. Lin et al., DDX18 prevents R-loop-induced DNA damage and genome instability via PARP-1. Cell. Rep. 40, 111089 (2022)
[DOI:
10.1016/j.celrep.2022.111089]