Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy.

Qingwen Qi, Qian Wang, Yuhao Li, Dionisio Zaldivar Silva, Maria Eliana Lanio Ruiz, Ruizhuo Ouyang, Baolin Liu, Yuqing Miao
Author Information
  1. Qingwen Qi: School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
  2. Qian Wang: School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
  3. Yuhao Li: School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China. ORCID
  4. Dionisio Zaldivar Silva: USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China. ORCID
  5. Maria Eliana Lanio Ruiz: USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China.
  6. Ruizhuo Ouyang: School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China. ORCID
  7. Baolin Liu: USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China.
  8. Yuqing Miao: School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.

Abstract

Rhenium (Re) is widely used in the diagnosis and treatment of cancer due to its unique physical and chemical properties. Re has more valence electrons in its outer shell, allowing it to exist in a variety of oxidation states and to form different geometric configurations with many different ligands. The luminescence properties, lipophilicity, and cytotoxicity of complexes can be adjusted by changing the ligand of Re. This article mainly reviews the development of radionuclide Re in radiotherapy and some innovative applications of Re as well as the different therapeutic approaches and imaging techniques used in cancer therapy. In addition, the current application and future challenges and opportunities of Re are also discussed.

Keywords

References

Nanomaterials (Basel). 2022 Jun 06;12(11): [PMID: 35683791]
ACS Nano. 2016 Jan 26;10(1):1417-24 [PMID: 26731174]
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8668-73 [PMID: 23610422]
Chemistry. 2016 Jun 1;22(23):7800-9 [PMID: 27106876]
Inorg Chem. 2017 Nov 6;56(21):13491-13499 [PMID: 28990789]
Inorg Chem. 2007 Dec 10;46(25):10458-60 [PMID: 18001120]
ACS Med Chem Lett. 2019 Apr 23;10(5):822-827 [PMID: 31098006]
Crit Rev Oncol Hematol. 2003 Mar;45(3):277-304 [PMID: 12633840]
Int J Mol Sci. 2021 Jun 18;22(12): [PMID: 34207182]
Int J Rad Appl Instrum B. 1991;18(5):449-54 [PMID: 1670497]
Int J Cancer. 2002 Oct 10;101(5):480-7 [PMID: 12216078]
RSC Adv. 2022 Jul 14;12(31):20264-20295 [PMID: 35919594]
Inorg Chem. 2017 Feb 6;56(3):1534-1545 [PMID: 28079376]
Molecules. 2009 Feb 13;14(2):738-54 [PMID: 19223822]
Adv Drug Deliv Rev. 2020 Dec;167:121-134 [PMID: 32579891]
Angew Chem Int Ed Engl. 2022 Feb 14;61(8):e202115800 [PMID: 34842317]
Ultrasound Med Biol. 2020 Mar;46(3):498-517 [PMID: 31813583]
Nucl Med Biol. 1999 Jul;26(5):573-9 [PMID: 10473197]
RSC Adv. 2021 Apr 23;11(25):15323-15331 [PMID: 35424038]
Cancer Biother Radiopharm. 2003 Oct;18(5):707-17 [PMID: 14629819]
Chemistry. 2014 Feb 24;20(9):2496-507 [PMID: 24464824]
J Inorg Biochem. 2014 Jun;135:1-9 [PMID: 24632342]
Environ Toxicol Pharmacol. 2018 Oct;63:127-134 [PMID: 30223109]
Chemistry. 2018 Sep 3;24(49):12902-12911 [PMID: 29675830]
Theranostics. 2019 Oct 17;9(26):8026-8047 [PMID: 31754379]
Dalton Trans. 2014 Mar 21;43(11):4287-94 [PMID: 23982882]
Int J Cancer. 1996 Jan 17;65(2):214-20 [PMID: 8567120]
Int J Rad Appl Instrum B. 1986;13(4):447-51 [PMID: 3793500]
J Am Chem Soc. 2015 Mar 4;137(8):2967-74 [PMID: 25698398]
Chem Commun (Camb). 2022 Mar 8;58(20):3314-3317 [PMID: 35179153]
Adv Drug Deliv Rev. 2017 Apr;113:201-222 [PMID: 27620496]
IUCrJ. 2017 Apr 11;4(Pt 3):283-290 [PMID: 28512575]
Chemistry. 2015 Jan 12;21(3):942-58 [PMID: 25376740]
Eur J Med Chem. 2018 Sep 5;157:773-781 [PMID: 30142613]
J Am Chem Soc. 2022 Mar 30;144(12):5241-5246 [PMID: 35297640]
Anticancer Res. 2007 Jul-Aug;27(4B):2487-92 [PMID: 17695543]
Chem Sci. 2019 Apr 23;10(21):5435-5443 [PMID: 31293725]
Dalton Trans. 2016 Sep 13;45(36):14101-14108 [PMID: 27711690]
J Med Chem. 2009 Aug 27;52(16):5253-61 [PMID: 19627091]
Molecules. 2017 May 15;22(5): [PMID: 28505142]
Appl Radiat Isot. 1996 Jan;47(1):7-14 [PMID: 8589673]
Adv Mater. 2021 Aug;33(34):e2102188 [PMID: 34278622]
J Inorg Biochem. 2021 Oct;223:111537 [PMID: 34273716]
J Mater Chem B. 2021 Sep 15;9(35):7007-7022 [PMID: 34023868]
Biomater Sci. 2022 Oct 11;10(20):5809-5830 [PMID: 36052551]
ACS Appl Mater Interfaces. 2022 Aug 24;14(33):37356-37368 [PMID: 35951459]
Angew Chem Int Ed Engl. 2015 Dec 1;54(49):14758-62 [PMID: 26460151]
Dalton Trans. 2022 Mar 1;51(9):3666-3675 [PMID: 35165680]
Biomaterials. 2018 Mar;159:68-81 [PMID: 29316453]
ChemMedChem. 2008 Sep;3(9):1387-94 [PMID: 18651631]
Chem Commun (Camb). 2019 Dec 19;56(2):301-304 [PMID: 31808472]
Appl Radiat Isot. 1996 Mar;47(3):267-71 [PMID: 8935963]
Eur J Inorg Chem. 2014 Feb 1;2014(5):807-811 [PMID: 25050081]
Small. 2016 May;12(20):2775-82 [PMID: 27062146]
Biomaterials. 2018 Sep;176:94-105 [PMID: 29870900]
Mol Cell Biochem. 2018 Apr;441(1-2):151-163 [PMID: 28913709]
ACS Appl Mater Interfaces. 2017 Apr 26;9(16):13900-13912 [PMID: 28368110]
Inorg Chem. 2018 Feb 5;57(3):1311-1331 [PMID: 29323880]
Cell Death Differ. 2004 Oct;11(10):1066-75 [PMID: 15195070]
Front Med (Lausanne). 2019 Jun 14;6:132 [PMID: 31259173]
Inorg Chem. 2003 May 5;42(9):2818-20 [PMID: 12716167]
Biogerontology. 2009 Aug;10(4):323-38 [PMID: 19156531]
J Bioprocess Biotech. 2013 Dec 27;4(1):141 [PMID: 25221731]
Small. 2018 Apr;14(14):e1703789 [PMID: 29468828]
Acta Biomater. 2023 Mar 1;158:637-648 [PMID: 36621634]
Exp Gerontol. 1992 Sep-Dec;27(5-6):469-76 [PMID: 1426082]
Appl Radiat Isot. 1997 Mar;48(3):305-9 [PMID: 9116651]
Molecules. 2022 Aug 18;27(16): [PMID: 36014521]
ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13123-13133 [PMID: 30888144]
Angew Chem Int Ed Engl. 2022 Apr 19;61(17):e202200480 [PMID: 35143118]
Adv Mater. 2019 Jun;31(23):e1900730 [PMID: 30977247]
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33650-33658 [PMID: 31448891]
J Colloid Interface Sci. 2007 Jun 1;310(1):167-70 [PMID: 17321536]
Chemistry. 2019 Jul 11;25(39):9206-9210 [PMID: 31090971]
Appl Radiat Isot. 2000 Apr;52(4):851-5 [PMID: 10800721]
Int J Rad Appl Instrum B. 1986;13(4):465-77 [PMID: 3793504]
Cancer Biother Radiopharm. 2022 Feb;37(1):63-70 [PMID: 34101501]
Nanoscale. 2015 Jan 14;7(2):440-4 [PMID: 25418982]
RSC Adv. 2018 Jan 25;8(9):4624-4633 [PMID: 35539567]
Adv Sci (Weinh). 2020 Jan 27;7(6):1902847 [PMID: 32195096]
Contrast Media Mol Imaging. 2022 Feb 25;2022:7684076 [PMID: 35280705]
Angew Chem Int Ed Engl. 2013 Dec 2;52(49):13047-51 [PMID: 24281889]
Cancer Cell. 2005 Jun;7(6):505-12 [PMID: 15950900]
JAMA Netw Open. 2020 Sep 1;3(9):e2017144 [PMID: 32970153]
Inorg Chem. 2019 Mar 18;58(6):3895-3909 [PMID: 30793900]
Mol Oncol. 2022 Sep;16(18):3276-3294 [PMID: 35842901]
Blood. 2001 Aug 1;98(3):565-72 [PMID: 11468151]
Curr Pharm Des. 2019;25(31):3306-3322 [PMID: 31475892]
Molecules. 2020 Sep 12;25(18): [PMID: 32932573]
Int J Rad Appl Instrum B. 1990;17(4):357-62 [PMID: 2387743]
Dalton Trans. 2020 Aug 25;49(33):11583-11590 [PMID: 32766642]
ACS Appl Mater Interfaces. 2020 Sep 30;12(39):43474-43487 [PMID: 32870658]
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Mar;9(2): [PMID: 27346564]
Adv Mater. 2019 Feb;31(5):e1805936 [PMID: 30537012]
Medchemcomm. 2017 Dec 20;9(1):173-180 [PMID: 30108911]
Br J Cancer. 1979 Apr;39(4):398-407 [PMID: 220998]
ChemMedChem. 2013 Jun;8(6):924-7 [PMID: 23568508]
J Biol Inorg Chem. 2020 Dec;25(8):1107-1116 [PMID: 33079244]
J Med Chem. 2020 Aug 13;63(15):8265-8275 [PMID: 32658479]
Acta Biomater. 2021 Jan 1;119:323-336 [PMID: 33122146]
Eur J Nucl Med. 1995 Jun;22(6):505-7 [PMID: 7556293]
Mol Cell Biochem. 2015 Jan;398(1-2):21-30 [PMID: 25262122]
Chembiochem. 2005 Aug;6(8):1397-405 [PMID: 15959921]
Int J Radiat Oncol Biol Phys. 1999 Apr 1;44(1):189-99 [PMID: 10219814]
Chem Commun (Camb). 2015 May 14;51(39):8353-6 [PMID: 25882790]
Nat Nanotechnol. 2009 Oct;4(10):634-41 [PMID: 19809453]
Adv Healthc Mater. 2021 Sep;10(18):e2100703 [PMID: 34363332]
ChemMedChem. 2015 Nov;10(11):1901-14 [PMID: 26332425]
Small. 2016 Aug;12(29):3995-4006 [PMID: 27345304]
Chemistry. 2017 May 11;23(27):6518-6521 [PMID: 28337805]
Small. 2016 Aug;12(29):3967-75 [PMID: 27345460]
Arch Pharm Res. 2003 Feb;26(2):168-72 [PMID: 12643596]
Angew Chem Int Ed Engl. 2016 Feb 18;55(8):2792-5 [PMID: 26799241]
Nat Rev Drug Discov. 2010 Sep;9(9):728-43 [PMID: 20811383]
Adv Colloid Interface Sci. 2018 Dec;262:39-49 [PMID: 30396507]
Acc Chem Res. 2016 Sep 20;49(9):1731-40 [PMID: 27564418]

Grants

  1. 19ZR1434700/the Natural Science Foundation of Shanghai

MeSH Term

Humans
Rhenium
Neoplasms
Luminescence
Radioisotopes
Oxidation-Reduction
Ligands

Chemicals

Rhenium
Radioisotopes
Ligands

Word Cloud

Similar Articles

Cited By