Establishing a human bone marrow single cell reference atlas to study ageing and diseases.

Nicole Yee Shin Lee, Mengwei Li, Kok Siong Ang, Jinmiao Chen
Author Information
  1. Nicole Yee Shin Lee: Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.
  2. Mengwei Li: Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.
  3. Kok Siong Ang: Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.
  4. Jinmiao Chen: Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.

Abstract

Introduction: Ageing in the human bone marrow is associated with immune function decline that results in the elderly being vulnerable to illnesses. A comprehensive healthy bone marrow consensus atlas can serve as a reference to study the immunological changes associated with ageing, and to identify and study abnormal cell states.
Methods: We collected publicly available single cell transcriptomic data of 145 healthy samples encompassing a wide spectrum of ages ranging from 2 to 84 years old to construct our human bone marrow atlas. The final atlas has 673,750 cells and 54 annotated cell types.
Results: We first characterised the changes in cell population sizes with respect to age and the corresponding changes in gene expression and pathways. Overall, we found significant age-associated changes in the lymphoid lineage cells. The na��ve CD8 T cell population showed significant shrinkage with ageing while the effector/memory CD4 T cells increased in proportion. We also found an age-correlated decline in the common lymphoid progenitor population, in line with the commonly observed myeloid skew in haematopoiesis among the elderly. We then employed our cell type-specific ageing gene signatures to develop a machine learning model that predicts the biological age of bone marrow samples, which we then applied to healthy individuals and those with blood diseases. Finally, we demonstrated how to identify abnormal cell states by mapping disease samples onto the atlas. We accurately identified abnormal plasma cells and erythroblasts in multiple myeloma samples, and abnormal cells in acute myeloid leukaemia samples.
Discussion: The bone marrow is the site of haematopoiesis, a highly important bodily process. We believe that our healthy bone marrow atlas is a valuable reference for studying bone marrow processes and bone marrow-related diseases. It can be mined for novel discoveries, as well as serve as a reference scaffold for mapping samples to identify and investigate abnormal cells.

Keywords

References

  1. J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S4-9 [PMID: 24833586]
  2. Front Immunol. 2016 Nov 14;7:502 [PMID: 27895645]
  3. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  4. Nat Rev Cardiol. 2018 Sep;15(9):505-522 [PMID: 30065258]
  5. Leukemia. 2011 Jul;25(7):1174-81 [PMID: 21403648]
  6. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  7. Blood. 2016 Apr 14;127(15):1881-5 [PMID: 26941402]
  8. Nat Commun. 2021 May 7;12(1):2559 [PMID: 33963182]
  9. Oncogene. 2006 Sep 7;25(40):5537-46 [PMID: 16732331]
  10. JCI Insight. 2018 Dec 6;3(23): [PMID: 30518681]
  11. Cell Res. 2018 Jun;28(6):625-643 [PMID: 29808012]
  12. Nucleic Acids Res. 2018 Jan 4;46(D1):D1083-D1090 [PMID: 29121237]
  13. Immun Ageing. 2018 Jan 19;15:1 [PMID: 29387133]
  14. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  15. Cancer Res. 2016 Jun 1;76(11):3340-50 [PMID: 27197150]
  16. Diabetes Care. 2013 Jan;36(1):166-75 [PMID: 23264288]
  17. BMC Cancer. 2017 Jul 17;17(1):487 [PMID: 28716088]
  18. Exp Hematol. 2006 Oct;34(10):1289-95 [PMID: 16982321]
  19. Nat Aging. 2021 Jun;1(6):535-549 [PMID: 37117829]
  20. Front Immunol. 2021 Jul 21;12:714742 [PMID: 34367184]
  21. Nat Biotechnol. 2019 Apr;37(4):451-460 [PMID: 30899105]
  22. Biochim Biophys Acta. 2014 Aug;1846(1):188-200 [PMID: 24932569]
  23. Br J Haematol. 2003 Apr;121(1):36-43 [PMID: 12670329]
  24. Haematologica. 2020 Jan;105(1):22-37 [PMID: 31806687]
  25. Nat Rev Immunol. 2022 Aug;22(8):484-498 [PMID: 34815556]
  26. Nat Cancer. 2023 Jan;4(1):27-42 [PMID: 36581735]
  27. Nat Genet. 2023 Nov;55(11):1998-2008 [PMID: 37828140]
  28. J Innate Immun. 2011;3(4):337-43 [PMID: 21576928]
  29. Am J Hematol. 2016 Jun;91(4):371-8 [PMID: 26749142]
  30. Exp Hematol. 2018 Dec;68:51-61 [PMID: 30243574]
  31. Cell. 2019 Mar 7;176(6):1265-1281.e24 [PMID: 30827681]
  32. Elife. 2021 Apr 13;10: [PMID: 33847263]
  33. Sci Rep. 2020 Nov 25;10(1):20508 [PMID: 33239656]
  34. Blood Cells Mol Dis. 2007 Nov-Dec;39(3):344-7 [PMID: 17686638]
  35. Genome Biol. 2013;14(10):R115 [PMID: 24138928]
  36. Nucleic Acids Res. 2022 Jan 7;50(D1):D596-D602 [PMID: 34791375]
  37. Immun Ageing. 2019 Sep 11;16:24 [PMID: 31528179]
  38. Front Immunol. 2021 Nov 11;12:738204 [PMID: 34858399]
  39. Immunity. 2019 Jan 15;50(1):37-50 [PMID: 30650380]
  40. Aging Cell. 2019 Dec;18(6):e13041 [PMID: 31560156]
  41. Immunity. 2021 Jan 12;54(1):99-115.e12 [PMID: 33271118]
  42. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):E2905-14 [PMID: 23858460]

MeSH Term

Humans
Aged
Child, Preschool
Child
Adolescent
Young Adult
Adult
Middle Aged
Aged, 80 and over
Bone Marrow
Aging
Cellular Senescence
T-Lymphocytes
Bone Marrow Diseases

Word Cloud

Similar Articles

Cited By