Modeling cross-talk of RNA modification enzymes reveals tumor microenvironment-associated clinical significance and immunotherapy prediction in hepatobiliary malignancy.

Feng Qi, Jia Li, Zhuoran Qi, Bin Zhou, Biwei Yang, Jun Zhang, Wenxing Qin
Author Information
  1. Feng Qi: Phase I Clinical Trial Center, Department of Oncology, Shanghai Medical College Fudan University Shanghai Cancer Center Fudan University Shanghai China.
  2. Jia Li: Liver Cancer Institute Zhongshan Hospital Fudan University Shanghai China.
  3. Zhuoran Qi: Liver Cancer Institute Zhongshan Hospital Fudan University Shanghai China.
  4. Bin Zhou: Department of Hepatic Surgery VI Eastern Hepatobiliary Surgery Hospital Second Military Medical University Shanghai China.
  5. Biwei Yang: Liver Cancer Institute Zhongshan Hospital Fudan University Shanghai China.
  6. Jun Zhang: Department of Oncology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China.
  7. Wenxing Qin: Phase I Clinical Trial Center, Department of Oncology, Shanghai Medical College Fudan University Shanghai Cancer Center Fudan University Shanghai China.

Abstract

RNA modification includes four main types, N6-methyladenosine, N1-methyladenosine, alternative polyadenylation (APA), and adenosine-to-inosine (A-to-I) RNA editing, involving 41 enzymes that serve as "writers", "readers" and "erasers". By collecting RNA modifying enzyme information in 1759 hepatobiliary malignancy (HBM) samples from 11 datasets, an RNA modification HBM Score (RH_score) was established based on unsupervised cluster analysis of RNA modification-associated differentially expressed genes (DEGs). We identified the imbalanced expression of 41 RNA modification enzymes in HBM, which was scientifically categorized into two groups: RH_Score high and RH_Score low. A high RH_Score was associated with a worse prognosis and more immature immune cells in the tumor microenvironment (TME), while a low RH_Score was associated with a better prognosis and more mature immune cells in the TME. Further analysis using single-cell databases showed that the high RH_Score was immune exhaustion in the TME. RH_Score was involved in transcriptional regulation and post-transcriptional events in HBM. Additionally, resistant and sensitive drugs were selected based on RNA modification, and anti-PD-L1 therapy responded better with low RH_Score. In conclusion, our study comprehensively analyzes RNA modification in HBM, which induces TME changes and transcriptional and posttranscriptional events, implying potential guiding significance in prognosis prediction and treatment options.

Keywords

References

  1. Cancer Res. 2013 Dec 1;73(23):7122-33 [PMID: 24145349]
  2. Cell. 2020 Oct 15;183(2):377-394.e21 [PMID: 32976798]
  3. Lancet Oncol. 2016 Dec;17(12):e542-e551 [PMID: 27924752]
  4. Hepatology. 2019 Feb;69(2):639-652 [PMID: 30136421]
  5. Hepatology. 2018 Jul;68(1):113-126 [PMID: 29360137]
  6. Nat Commun. 2019 Apr 23;10(1):1898 [PMID: 31015515]
  7. Mol Cancer. 2021 Feb 8;20(1):29 [PMID: 33557837]
  8. Nature. 2019 Feb;566(7743):270-274 [PMID: 30728504]
  9. Radiother Oncol. 2009 Feb;90(2):183-8 [PMID: 19046788]
  10. Nat Rev Cancer. 2020 Jun;20(6):303-322 [PMID: 32300195]
  11. Oncoimmunology. 2021 Jun 23;10(1):1936758 [PMID: 34221700]
  12. Mol Cancer. 2020 Feb 28;19(1):44 [PMID: 32111216]
  13. Cancer Res. 2019 Jul 15;79(14):3714-3724 [PMID: 31064846]
  14. J Registry Manag. 2011 Winter;38(4):201-5 [PMID: 23270094]
  15. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]
  16. Nature. 2018 Feb 22;554(7693):544-548 [PMID: 29443960]
  17. Cancer Res. 2019 Sep 15;79(18):4557-4566 [PMID: 31350295]
  18. Cancer Lett. 2020 Feb 1;470:84-94 [PMID: 31610266]
  19. PLoS One. 2019 May 17;14(5):e0217196 [PMID: 31100099]
  20. Cell. 2015 Jun 4;161(6):1388-99 [PMID: 26046440]
  21. Mol Cancer. 2020 Mar 12;19(1):53 [PMID: 32164750]
  22. Cell Res. 2018 Feb;28(2):253-256 [PMID: 29303144]
  23. Nat Rev Mol Cell Biol. 2017 Jan;18(1):18-30 [PMID: 27677860]
  24. Cell. 2017 Feb 9;168(4):657-669 [PMID: 28187287]
  25. Essays Biochem. 2019 Dec 20;63(6):663-676 [PMID: 31782494]
  26. Biochim Biophys Acta Rev Cancer. 2020 Aug;1874(1):188394 [PMID: 32698040]
  27. Nat Rev Mol Cell Biol. 2019 Oct;20(10):608-624 [PMID: 31520073]
  28. Cell Death Dis. 2019 Nov 7;10(11):854 [PMID: 31699997]
  29. Mol Cell. 2016 Feb 18;61(4):507-519 [PMID: 26876937]
  30. Theranostics. 2021 Jan 1;11(5):2201-2217 [PMID: 33500720]
  31. J Hepatol. 2016 Apr;64(1 Suppl):S84-S101 [PMID: 27084040]
  32. Cell Death Dis. 2017 May 25;8(5):e2833 [PMID: 28542129]
  33. Adv Drug Deliv Rev. 2017 Nov 1;121:124-132 [PMID: 29079534]
  34. Mol Cancer. 2019 Nov 18;18(1):163 [PMID: 31735169]
  35. Mol Cancer. 2019 Dec 19;18(1):186 [PMID: 31856849]
  36. MedComm (2020). 2023 Apr 18;4(3):e256 [PMID: 37090117]
  37. Genome Biol. 2016 Oct 20;17(1):218 [PMID: 27765066]
  38. Cell. 2021 Jan 21;184(2):404-421.e16 [PMID: 33357445]
  39. Clin Cancer Res. 2002 Aug;8(8):2605-11 [PMID: 12171891]
  40. Mol Cancer. 2019 Aug 22;18(1):127 [PMID: 31438961]
  41. Cell. 2017 Jun 15;169(7):1342-1356.e16 [PMID: 28622514]
  42. Oncogene. 2001 Jan 18;20(3):336-45 [PMID: 11313963]
  43. Cell. 2017 Jun 15;169(7):1187-1200 [PMID: 28622506]
  44. Front Oncol. 2019 May 09;9:369 [PMID: 31143705]

Word Cloud

Similar Articles

Cited By