Jiajun Luo, Yeye Wen, Xiangzheng Jia, Xudong Lei, Zhenfei Gao, Muqiang Jian, Zhihua Xiao, Lanying Li, Jiangwei Zhang, Tao Li, Hongliang Dong, Xianqian Wu, Enlai Gao, Kun Jiao, Jin Zhang
Synthetic high-performance fibers present excellent mechanical properties and promising applications in the impact protection field. However, fabricating fibers with high strength and high toughness is challenging due to their intrinsic conflicts. Herein, we report a simultaneous improvement in strength, toughness, and modulus of heterocyclic aramid fibers by 26%, 66%, and 13%, respectively, via polymerizing a small amount (0.05 wt%) of short aminated single-walled carbon nanotubes (SWNTs), achieving a tensile strength of 6.44 ± 0.11 GPa, a toughness of 184.0 ± 11.4 MJ m, and a Young's modulus of 141.7 ± 4.0 GPa. Mechanism analyses reveal that short aminated SWNTs improve the crystallinity and orientation degree by affecting the structures of heterocyclic aramid chains around SWNTs, and in situ polymerization increases the interfacial interaction therein to promote stress transfer and suppress strain localization. These two effects account for the simultaneous improvement in strength and toughness.
J Am Chem Soc. 2005 Mar 23;127(11):3847-54
[PMID:
15771520]
Polymers (Basel). 2019 May 10;11(5):
[PMID:
31083401]
ACS Nano. 2019 Jul 23;13(7):7886-7897
[PMID:
31244045]
Materials (Basel). 2021 Jun 25;14(13):
[PMID:
34202371]
Science. 2001 Aug 17;293(5533):1299-301
[PMID:
11509725]
J Chem Theory Comput. 2013 Jan 8;9(1):338-54
[PMID:
26589037]
ACS Nano. 2020 Aug 25;14(8):9282-9319
[PMID:
32790347]
ACS Appl Mater Interfaces. 2014 May 14;6(9):6069-87
[PMID:
24520802]
J Chem Phys. 2010 Apr 21;132(15):154104
[PMID:
20423165]
Science. 2008 Feb 15;319(5865):908-9
[PMID:
18276875]
Small. 2009 Apr;5(4):466-9
[PMID:
19189328]
Nat Mater. 2011 Oct 24;10(11):817-22
[PMID:
22020005]
J Chem Phys. 2020 Mar 31;152(12):124101
[PMID:
32241125]
Science. 2018 Nov 2;362(6414):547-553
[PMID:
30385571]
Adv Mater. 2010 Jun 25;22(24):2694-7
[PMID:
20473982]
Nat Mater. 2010 Apr;9(4):359-67
[PMID:
20228820]
ACS Nano. 2009 Dec 22;3(12):3884-90
[PMID:
19957928]
Nano Lett. 2016 Oct 12;16(10):6695-6700
[PMID:
27623222]
J Phys Chem B. 2015 Jan 22;119(3):1062-82
[PMID:
25178644]
Nano Lett. 2019 Jun 12;19(6):3519-3526
[PMID:
31084030]
J Chem Theory Comput. 2014 Apr 8;10(4):1518-1537
[PMID:
24803865]
Adv Mater. 2013 Oct 4;25(37):5153-76
[PMID:
23813859]
J Comput Chem. 2011 May;32(7):1456-65
[PMID:
21370243]
Nanoscale. 2020 Jan 28;12(4):2228-2267
[PMID:
31930259]
Angew Chem Int Ed Engl. 2014 May 19;53(21):5262-98
[PMID:
24668878]
Nat Mater. 2002 Nov;1(3):190-4
[PMID:
12618809]
Nature. 2017 Mar 9;543(7644):234-238
[PMID:
28199307]