Recent Advances in the Development of Liquid Crystalline Nanoparticles as Drug Delivery Systems.

Jassica S L Leu, Jasy J X Teoh, Angel L Q Ling, Joey Chong, Yan Shan Loo, Intan Diana Mat Azmi, Noor Idayu Zahid, Rajendran J C Bose, Thiagarajan Madheswaran
Author Information
  1. Jassica S L Leu: School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia.
  2. Jasy J X Teoh: School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia.
  3. Angel L Q Ling: School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia.
  4. Joey Chong: School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia.
  5. Yan Shan Loo: Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia. ORCID
  6. Intan Diana Mat Azmi: Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia. ORCID
  7. Noor Idayu Zahid: Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia. ORCID
  8. Rajendran J C Bose: Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA. ORCID
  9. Thiagarajan Madheswaran: Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia.

Abstract

Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.

Keywords

References

ACS Appl Mater Interfaces. 2021 Nov 24;13(46):54753-54761 [PMID: 34752078]
Polymers (Basel). 2023 Apr 02;15(7): [PMID: 37050387]
Eur J Pharm Sci. 2017 Apr 1;101:31-42 [PMID: 28137471]
Langmuir. 2015 Mar 10;31(9):2615-29 [PMID: 25068381]
Soft Matter. 2021 Mar 28;17(12):3306-3313 [PMID: 33623948]
Langmuir. 2019 Nov 12;35(45):14532-14542 [PMID: 31635451]
Int J Nanomedicine. 2014;9:327-36 [PMID: 24421641]
Pharmaceuticals (Basel). 2021 Aug 09;14(8): [PMID: 34451883]
J Liposome Res. 2020 Mar;30(1):1-11 [PMID: 31010357]
Biotechnol Adv. 2014 Jul-Aug;32(4):711-26 [PMID: 24252561]
Drug Deliv. 2021 Dec;28(1):293-305 [PMID: 33509004]
Sci Rep. 2020 May 6;10(1):7618 [PMID: 32376883]
Drug Discov Today. 2007 Jan;12(1-2):54-61 [PMID: 17198973]
J Drug Target. 2015 Dec;23(10):865-87 [PMID: 25835469]
Eur J Pharm Biopharm. 2012 Feb;80(2):368-78 [PMID: 22061263]
Pharm Res. 2014 May;31(5):1219-38 [PMID: 24218223]
ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25174-25185 [PMID: 29963859]
Drug Dev Ind Pharm. 2019 Jun;45(6):981-994 [PMID: 30865478]
ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11078-11091 [PMID: 35196008]
Chem Pharm Bull (Tokyo). 2020;68(11):1025-1033 [PMID: 33132369]
AAPS PharmSciTech. 2018 Jan;19(1):460-469 [PMID: 28785860]
J Colloid Interface Sci. 2022 Feb;607(Pt 2):978-991 [PMID: 34571316]
Int J Pharm. 2021 May 15;601:120483 [PMID: 33737098]
BMC Cancer. 2018 Aug 15;18(1):822 [PMID: 30111296]
J Adv Pharm Technol Res. 2021 Oct-Dec;12(4):356-361 [PMID: 34820309]
Acta Biomater. 2021 May;126:433-444 [PMID: 33774200]
Adv Sci (Weinh). 2018 Nov 12;6(3):1801223 [PMID: 30775224]
Pharmaceutics. 2020 Oct 24;12(11): [PMID: 33114287]
Langmuir. 2015 Nov 24;31(46):12770-6 [PMID: 26513646]
Int J Nanomedicine. 2016 Jul 29;11:3571-83 [PMID: 27536099]
Eur J Pharm Sci. 2021 May 1;160:105748 [PMID: 33567324]
Pharm Res. 2020 Sep 23;37(10):198 [PMID: 32968868]
Mol Pharm. 2016 Jan 4;13(1):280-6 [PMID: 26567591]
Biomed Pharmacother. 2021 Oct;142:112029 [PMID: 34416629]
Mol Biol Cell. 2018 Aug 8;29(16):2024-2035 [PMID: 30044708]
Int J Biol Macromol. 2020 Apr 1;148:793-801 [PMID: 31972196]
J Control Release. 2018 Jan 28;270:290-303 [PMID: 29269142]
Drug Discov Today. 2019 Jul;24(7):1405-1412 [PMID: 31102731]
J Pharm Sci. 2021 Jul;110(7):2677-2686 [PMID: 33600809]
J Pharm Sci. 2020 Jul;109(7):2213-2223 [PMID: 32259532]
Eur J Pharm Biopharm. 2019 Jan;134:60-67 [PMID: 30445164]
Int J Pharm. 2021 May 1;600:120411 [PMID: 33675926]
Langmuir. 2012 Jun 26;28(25):9223-32 [PMID: 22630595]
Drug Deliv Transl Res. 2022 Jul;12(7):1719-1737 [PMID: 34582029]
Drug Deliv Transl Res. 2020 Oct;10(5):1302-1313 [PMID: 32399604]
J Control Release. 2022 Sep;349:533-549 [PMID: 35792188]
Int J Mol Sci. 2021 Aug 02;22(15): [PMID: 34361084]
Eur J Pharm Sci. 2016 Jun 10;88:282-90 [PMID: 27072433]
Drug Discov Today. 2010 Dec;15(23-24):1032-40 [PMID: 20934534]
J Pharm Sci. 2021 May;110(5):2210-2220 [PMID: 33621518]
Angew Chem Int Ed Engl. 2019 Mar 4;58(10):2958-2978 [PMID: 29926520]
Pharmaceutics. 2019 Mar 19;11(3): [PMID: 30893852]
Acta Pharm Sin B. 2021 Apr;11(4):871-885 [PMID: 33996404]
Mol Pharm. 2021 Mar 1;18(3):1038-1047 [PMID: 33395310]
Int J Nanomedicine. 2010 Feb 02;5:13-23 [PMID: 20161984]
Int J Nanomedicine. 2017 Jul 13;12:4991-5011 [PMID: 28761340]
Colloids Surf B Biointerfaces. 2021 Aug;204:111799 [PMID: 33971614]
J Colloid Interface Sci. 2020 Aug 1;573:176-192 [PMID: 32278949]
ACS Appl Mater Interfaces. 2015 Sep 16;7(36):20360-8 [PMID: 26315487]
Pharmaceuticals (Basel). 2022 Mar 31;15(4): [PMID: 35455426]
Int J Pharm. 2022 Apr 25;618:121649 [PMID: 35278600]
Langmuir. 2014 Jun 10;30(22):6398-407 [PMID: 24833115]
Int J Nanomedicine. 2020 Dec 01;15:9557-9570 [PMID: 33293807]
Front Chem. 2018 Aug 20;6:360 [PMID: 30177965]
ACS Omega. 2020 Oct 06;5(41):26697-26709 [PMID: 33110996]
Int J Pharm. 2021 May 1;600:120490 [PMID: 33744451]
Pharmaceutics. 2021 Dec 28;14(1): [PMID: 35056964]
Nanomaterials (Basel). 2020 May 18;10(5): [PMID: 32443582]
Int J Pharm. 2020 Dec 15;591:119942 [PMID: 33039495]
Nat Commun. 2019 Oct 3;10(1):4492 [PMID: 31582802]
Langmuir. 2017 Apr 11;33(14):3509-3516 [PMID: 28325047]
Nanomedicine (Lond). 2016 Nov;11(22):2975-2996 [PMID: 27785978]
J Colloid Interface Sci. 2021 Jan 15;582(Pt B):773-781 [PMID: 32916575]
J Colloid Interface Sci. 2022 Feb;607(Pt 1):848-856 [PMID: 34536939]
Int J Pharm. 2018 Jan 15;535(1-2):18-26 [PMID: 29102699]
Int J Pharm. 2017 Oct 30;532(1):345-351 [PMID: 28844902]
J Pharm Sci. 2017 Oct;106(10):3103-3112 [PMID: 28479357]
AAPS PharmSciTech. 2021 Feb 22;22(3):81 [PMID: 33619612]
Molecules. 2021 Jun 15;26(12): [PMID: 34203820]
Int J Nanomedicine. 2016 Mar 02;11:853-71 [PMID: 27042053]
Int J Pharm. 2018 Oct 25;550(1-2):35-44 [PMID: 30134183]
Int J Nanomedicine. 2015 Nov 03;10:6879-89 [PMID: 26604754]
Pharmaceutics. 2020 Dec 24;13(1): [PMID: 33374293]
AAPS PharmSciTech. 2010 Sep;11(3):1405-10 [PMID: 20839080]
J Colloid Interface Sci. 2013 Mar 1;393:1-20 [PMID: 23237762]
Eur J Pharm Biopharm. 2011 Sep;79(1):15-22 [PMID: 21237267]
AAPS PharmSciTech. 2009;10(3):960-6 [PMID: 19636709]
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Jul 5;255:119719 [PMID: 33789189]
J Control Release. 2013 Jan 10;165(1):16-21 [PMID: 23142776]
Expert Opin Drug Deliv. 2014 Apr;11(4):547-64 [PMID: 24490701]
ACS Appl Bio Mater. 2020 Jul 20;3(7):4198-4207 [PMID: 35025421]
Drug Discov Today. 2022 Feb;27(2):576-584 [PMID: 34688912]
J Mater Chem B. 2023 Jan 4;11(2):403-414 [PMID: 36511883]
Int J Pharm. 2022 Jan 5;611:121275 [PMID: 34748809]
ACS Nano. 2019 Jun 25;13(6):6178-6206 [PMID: 31082192]
Int J Nanomedicine. 2020 Nov 04;15:8595-8608 [PMID: 33177820]
Cell Death Dis. 2020 Jan 2;11(1):1 [PMID: 31911576]
Neurochem Res. 2022 Mar;47(3):552-573 [PMID: 34800247]
J Mater Chem B. 2017 Jul 14;5(26):5061-5078 [PMID: 32264091]
Curr Pharm Des. 2020;26(27):3300-3316 [PMID: 32552637]
Chem Phys Lipids. 2021 Jan;234:105028 [PMID: 33309940]
Front Cell Neurosci. 2021 Dec 03;15:791573 [PMID: 34924960]
J Colloid Interface Sci. 2022 Jan;605:146-154 [PMID: 34311309]
Langmuir. 2018 Jun 5;34(22):6570-6581 [PMID: 29768016]
Small. 2022 Feb;18(5):e2104211 [PMID: 34825488]
Eur J Pharm Biopharm. 2010 Feb;74(2):157-63 [PMID: 19755158]
AAPS PharmSciTech. 2018 May;19(4):1699-1711 [PMID: 29532426]
Acta Pharm Sin B. 2015 Jan;5(1):79-88 [PMID: 26579429]
Front Aging Neurosci. 2020 Jan 10;11:373 [PMID: 31998120]
AAPS PharmSciTech. 2018 Jul;19(5):2023-2040 [PMID: 29869308]
Int J Nanomedicine. 2015 Jul 30;10:4815-24 [PMID: 26257519]
Curr Drug Deliv. 2019;16(5):444-460 [PMID: 30714524]

Word Cloud

Similar Articles

Cited By