Kebe, M, Gadhafi, R, Mohammad, B, Sanduleanu, M, Saleh, H, Al-Qutayri, M. Human vital signs detection methods and potential using radars: a review. Sensors 2020;20:1454. https://doi.org/10.3390/s20051454 .
[DOI:
10.3390/s20051454]
Adams, JG, Walls, RM. Supporting the health care workforce during the COVID-19 global epidemic. JAMA 2020;323:1439–40. https://doi.org/10.1001/jama.2020.3972 .
[DOI:
10.1001/jama.2020.3972]
Ciotti, M, Ciccozzi, M, Terrinoni, A, Jiang, WC, Wang, CB, Bernardini, S. The COVID-19 pandemic. Crit Rev Clin Lab Sci 2020;57:365–88. https://doi.org/10.1080/10408363.2020.1783198 .
[DOI:
10.1080/10408363.2020.1783198]
Yuki, K, Fujiogi, M, Koutsogiannaki, S. COVID-19 pathophysiology: a review. Clin Immunol 2020;215:108427. https://doi.org/10.1016/j.clim.2020.108427 .
[DOI:
10.1016/j.clim.2020.108427]
Klopfenstein, T, Kadiane-Oussou, NJ, Toko, L, Royer, PY, Lepiller, Q, Gendrin, V, et al.. Features of anosmia in COVID-19. Med Maladies Infect 2020;50:436–9. https://doi.org/10.1016/j.medmal.2020.04.006 .
[DOI:
10.1016/j.medmal.2020.04.006]
Li, C, Un, KF, Mak, P, Chen, Y, Munoz-Ferreras, JM, Yang, Z, et al.. Overview of recent development on wireless sensing circuits and systems for healthcare and biomedical applications. IEEE J Emerg Sel Topics Circuits Syst 2018;8:165–77. https://doi.org/10.1109/jetcas.2018.2822684 .
[DOI:
10.1109/jetcas.2018.2822684]
Wang, Y, Wang, W, Zhou, M, Ren, A, Tian, Z. Remote monitoring of human vital signs based on 77-GHz mm-vave FMCW radar. Sensors 2020;20:2999.
Alizadeh, M, Shaker, G, de Almeida, JCM, Morita, PP, Safavi-Naeini, S. Remote monitoring of human vital signs using mm-Wave FMCW radar. IEEE Access 2019;7:54958–68. https://doi.org/10.1109/access.2019.2912956 .
[DOI:
10.1109/access.2019.2912956]
Dai, TKV, Oleksak, K, Kvelashvili, T, Foroughian, F, Bauder, C, Theilmann, P, et al.. Enhancement of remote vital sign monitoring detection accuracy using multiple-input multiple-output 77 GHz FMCW radar. IEEE J Electromagn RF Microw Med Biol 2022;6:111–22. https://doi.org/10.1109/jerm.2021.3082807 .
[DOI:
10.1109/jerm.2021.3082807]
Wang, P, Ma, Y, Liang, F, Zhang, Y, Yu, X, Li, Z, et al.. Non-contact vital signs monitoring of dog and cat using a UWB radar. Animals 2020;10:205. https://doi.org/10.3390/ani10020205 .
[DOI:
10.3390/ani10020205]
Wang, G, Munoz-Ferreras, J-M, Gu, C, Li, C, Gomez-Garcia, R. Application of linear-frequency-modulated continuous-wave (LFMCW) radars for tracking of vital signs. IEEE Trans Microw Theor Tech 2014;62:1387–99. https://doi.org/10.1109/tmtt.2014.2320464 .
[DOI:
10.1109/tmtt.2014.2320464]
Lin, JC. Noninvasive microwave measurement of respiration. Proc IEEE 1975;63:1530. https://doi.org/10.1109/proc.1975.9992 .
[DOI:
10.1109/proc.1975.9992]
Li, C, Lin, J. Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection. In: 2008 IEEE MTT-S international microwave symposium digest (IMS 2008) . Atlanta, GA, USA; 2008.
Tang, MC, Kuo, CY, Wun, DC, Wang, FK, Horng, TS. A self-and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation. IEEE Trans Microw Theor Tech 2016;64:4812–22. https://doi.org/10.1109/tmtt.2016.2623612 .
[DOI:
10.1109/tmtt.2016.2623612]
Yang, X, Zhang, X, Ding, Y, Zhang, L. Indoor activity and vital sign monitoring for moving people with multiple radar data fusion. Rem Sens 2021;13:3791. https://doi.org/10.3390/rs13183791 .
[DOI:
10.3390/rs13183791]
Tang, MC, Wang, FK, Horng, TS. Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation. IEEE Trans Microw Theor Tech 2017;65:5324–33. https://doi.org/10.1109/tmtt.2017.2768363 .
[DOI:
10.1109/tmtt.2017.2768363]
Tang, MC, Kuo, CY, Wun, DC, Wang, FK, Horng, TS. Same side dual SIL-radar system for real-time vital sign monitoring with random body movement cancellation. In: 2016 IEEE MTT-S international microwave symposium (IMS 2016) . San Francisco, CA, USA; 2016.
Tang, MC, Wang, FK, Horng, TS. A single radar-based vital sign monitoring system with resistance to large body motion. In: 2017 IEEE MTT-S international microwave symposium (IMS 2017) . Honololu, HI, USA; 2017.
Munoz-Ferreras, JM, Peng, Z, Gomez-Garcia, R, Li, C. Random body movement mitigation for FMCW-radar-based vital-sign monitoring. In: 2016 IEEE topical conference on biomedical wireless technologies, networks, and sensing systems (BioWireleSS 2016) . Austin, TX, USA; 2016.
Yoo, YK, Shin, HC. Movement compensated driver’s respiratory rate extraction. Appl Sci 2022;12:2695. https://doi.org/10.3390/app12052695 .
[DOI:
10.3390/app12052695]
Lv, Q, Chen, L, An, K, Wang, J, Li, H, Ye, D, et al.. Doppler vital signs detection in the presence of large-scale random body movements. IEEE Trans Microw Theor Tech 2018;66:4261–70. https://doi.org/10.1109/tmtt.2018.2852625 .
[DOI:
10.1109/tmtt.2018.2852625]
Tu, J, Hwang, T, Lin, J. Authors’ reply to “Respiration rate measurement under 1-D body motion using single continuous-wave Doppler radar vital sign detection system”. IEEE Trans Microw Theor Tech 2019;67:2823. https://doi.org/10.1109/tmtt.2019.2915571 .
[DOI:
10.1109/tmtt.2019.2915571]
Hu, Y, Toda, T. Remote vital signs measurement of indoor walking persons using mm-Wave FMCW radar. IEEE Access 2022;10:78219–30. https://doi.org/10.1109/access.2022.3193789 .
[DOI:
10.1109/access.2022.3193789]
Zhang, F, Wang, Z, Jin, B, Xiong, J, Zhang, D. Your smart speaker can “hear” your heartbeat. Proc ACM Interact Mob Wearable Ubiquitous Technol 2020;4:1–24. https://doi.org/10.1145/3432237 .
[DOI:
10.1145/3432237]
Lin, F, Song, C, Zhuang, Y, Xu, W, Li, C, Ren, K, et al.. In: van der Merwe, K, Greenstein, B, Srinivasan, K, editors. Proceedings of the 23rd annual international conference on mobile computing and networking (MobiCom 2017) . New York, USA; 2017.
Yang, Z, Cheng, J, Qi, Q, Li, X, Wang, Y. A method of UWB radar vital detection based on P time extraction of strong vital signs. J Sens 2021;2021:1–10. https://doi.org/10.1155/2021/7294604 .
[DOI:
10.1155/2021/7294604]
Jardak, S, Alouini, MS, Kiuru, T, Metso, M, Ahmed, S. Compact mmWave FMCW radar: implementation and performance analysis. IEEE Aero Electron Syst Mag 2019;34:36–44. https://doi.org/10.1109/maes.2019.180130 .
[DOI:
10.1109/maes.2019.180130]
Chen, B, Qiao, S, Zhao, J, Liu, D, Shi, X, Lyu, M, et al.. A security awareness and protection system for 5G smart healthcare based on zero-trust architecture. IEEE Internet Things J 2021;8:10248–63. https://doi.org/10.1109/jiot.2020.3041042 .
[DOI:
10.1109/jiot.2020.3041042]
Adib, F, Mao, H, Kabelac, Z, Katabi, D, Miller, RC. Smart homes that monitor breathing and heart rate. In: Begole, B, Kim, J, Inkpen, K, Woo, W, editors. Proceedings of the 33rd annual ACM conference on human factors in computing systems (CHI 2015) . New York, NY, USA; 2015.
Lee, H, Kim, B-H, Yook, JG. Path loss compensation method for multiple target vital sign detection with 24-GHz FMCW radar. In: 2018 IEEE Asia-Pacific conference on antennas and propagation (APCAP 2018) . Auckland, New Zealand; 2018.
Venon, A, Dupuis, Y, Vasseur, P, Merriaux, P. Millimeter wave FMCW radars for perception, recognition and localization in automotive Applications: a survey. IEEE Trans Intell Veh 2022;7:533–55. https://doi.org/10.1109/tiv.2022.3167733 .
[DOI:
10.1109/tiv.2022.3167733]
Lei, YD, Raja, MK, Gang, ZZ. A transfomer based VCO with X4 frequency multiplier for 77GHZ FMCW Radar in ADAS cars. In: 2020 IEEE Asia-Pacific microwave conference (APMC 2020) . Hong Kong; 2020.
Zhao, Z, Wang, S, Wong, D, Sun, C, Yan, R, Chen, X. Robust enhanced trend filtering with unknown noise. Signal Process 2021;180:107889. https://doi.org/10.1016/j.sigpro.2020.107889 .
[DOI:
10.1016/j.sigpro.2020.107889]
Li, H, Li, Z, Mo, W. A time varying filter approach for empirical mode decomposition. Signal Process 2017;138:146–58. https://doi.org/10.1016/j.sigpro.2017.03.019 .
[DOI:
10.1016/j.sigpro.2017.03.019]
Choi, HI, Song, WJ, Song, H, Shin, HC. Selecting target range with accurate vital sign using spatial phase coherency of FMCW radar. Appl Sci 2021;11:4514. https://doi.org/10.3390/app11104514 .
[DOI:
10.3390/app11104514]
Islam, SMM, Motoyama, N, Pacheco, S, Lubecke, VM. Non-contact vital signs monitoring for multiple subjects using a millimeter wave FMCW automotive radar. In: 2020 IEEE MTT-S international microwave symposium (IMS 2020) . Los Angeles, CA, USA; 2020.
Zhang, J, Luo, H, Hui, B, Chang, Z, Zhang, X. Unknown noise removal via sparse representation model. ISA Trans 2019;94:135–43. https://doi.org/10.1016/j.isatra.2019.03.028 .
[DOI:
10.1016/j.isatra.2019.03.028]
Xiangyong, C, Qian, Z, Deyu, M, Yang, C, Zongben, X. Robust low-rank matrix factorization under general mixture noise distributions. IEEE Trans Image Process 2016;25:4677–90. https://doi.org/10.1109/tip.2016.2593343 .
[DOI:
10.1109/tip.2016.2593343]
Chen, L, Gu, Y. Robust sparse recovery via non-convex optimization. In: 2014 19th international conference on digital signal processing (DSP 2014) . Hong Kong, China; 2014.
Zolfaghari, P, Kato, H, Minami, Y, Nakamura, A, Katagiri, S, Patterson, RD. Dynamic assignment of Gaussian components in modelling speech spectra. J VLSI Signal Process Syst Signal, Image Video Technol 2006;45:7–19. https://doi.org/10.1007/s11265-006-9768-3 .
[DOI:
10.1007/s11265-006-9768-3]
Wu, Q, Mei, Z, Lai, Z, Li, D, Zhao, D. A non-contact vital signs detection in a multi-channel 77GHz LFMCW radar system. IEEE Access 2021;9:49614–28. https://doi.org/10.1109/access.2021.3068480 .
[DOI:
10.1109/access.2021.3068480]
Kondo, T, Uhlig, T, Pemberton, P, Sly, PD. Laser monitoring of chest wall displacement. Eur Respir J 1997;10:1865–9. https://doi.org/10.1183/09031936.97.10081865 .
[DOI:
10.1183/09031936.97.10081865]
Aardal, O, Hamran, SE, Berger, T, Paichard, Y, Lande, TS. Chest movement estimation from radar modulation caused by heartbeats. In: 2011 IEEE biomedical circuits and systems conference (BioCAS 2011) . San Diego, CA, USA; 2011.
Maz‘ya, V, Schmidt, G. On approximate approximations using Gaussian kernels. IMA J Numer Anal 1996;16:13–29. https://doi.org/10.1093/imanum/16.1.13 .
[DOI:
10.1093/imanum/16.1.13]
Zhang, X, Liu, Z, Miao, Q, Wang, L. An optimized time varying filtering based empirical mode decomposition method with grey wolf optimizer for machinery fault diagnosis. J Sound Vib 2018;418:55–78. https://doi.org/10.1016/j.jsv.2017.12.028 .
[DOI:
10.1016/j.jsv.2017.12.028]
Ahmad, A, Roh, JC, Wang, D, Dubey, A. Vital signs monitoring of multiple people using a FMCW millimeter-wave sensor. In: 2018 IEEE radar conference (RADARCONF) . Oklahoma City, OK, USA; 2018.
Su, W-C, Tang, M-C, Arif, RE, Horong, TS, Wang, FK. Single conversion stepped-frequency continuous-wave radar using self-injection-locking technology. In: 2019 IEEE MTT-S international microwave symposium (IMS 2019) . Boston, MA, USA; 2019.
Choi, HI, Song, H, Shin, HC. Target range selection of FMCW radar for accurate vital information extraction. IEEE Access 2021;9:1261–70. https://doi.org/10.1109/access.2020.3043013 .
[DOI:
10.1109/access.2020.3043013]
Gao, X, Xing, G, Roy, S, Liu, H. Experiments with mmWave automotive radar test-bed. In: 2019 53rd asilomar conference on signals, systems, and computers (Asilomar 2019) . Pacific Grove, CA, USA; 2019.
Chen, S, Cao, S, Sun, Y, Lin, Y, Gao, J. Seismic time-frequency analysis via time-varying filtering based empirical mode decomposition method. J Appl Geophys 2022;204:104731. https://doi.org/10.1016/j.jappgeo.2022.104731 .
[DOI:
10.1016/j.jappgeo.2022.104731]
Khair, U, Fahmi, H, Hakim, SA, Rahim, R. Forecasting error calculation with mean absolute deviation and mean absolute percentage error. J Phys Conf Ser 2017;930:12002. https://doi.org/10.1088/1742-6596/930/1/012002 .
[DOI:
10.1088/1742-6596/930/1/012002]
Mei, Z, Wu, Q, Hu, Z, Tao, J. A fast non-contact vital signs detection method based on regional hidden Markov Model in a 77GHz LFMCW radar system. In: ICASSP 2020 - 2020 IEEE international conference on acoustics, speech and signal processing (ICASSP 2020) . Barcelona, Spain; 2020.
Tu, J, Hwang, T, Lin, J. Respiration rate measurement under 1-D body motion using single continuous-wave Doppler radar vital sign detection system. IEEE Trans Microw Theor Tech 2016;64:1937–46. https://doi.org/10.1109/tmtt.2016.2560159 .
[DOI:
10.1109/tmtt.2016.2560159]
Khan, F, Azou, S, Youssef, R, Morel, P, Radoi, E. IR-UWB radar-based robust heart rate detection using a deep learning technique intended for vehicular applications. Electronics 2022;11:2505. https://doi.org/10.3390/electronics11162505 .
[DOI:
10.3390/electronics11162505]
Pour Ebrahim, M, Sarvi, M, Yuce, MR. A Doppler radar system for sensing physiological parameters in walking and standing positions. Sensors 2017;17:485. https://doi.org/10.3390/s17030485 .
[DOI:
10.3390/s17030485]
Yan, P, Houssineau, J, Petillot, YR, Clark, DE. Tracking with MIMO sonar systems: applications to harbour surveillance. IET Radar, Sonar Navig 2017;11:629–39. https://doi.org/10.1049/iet-rsn.2016.0080 .
[DOI:
10.1049/iet-rsn.2016.0080]
Hu, Z, Peng, J, Luo, K, Jiang, T. Parameter identifiability of space-time MIMO radar. Digit Signal Process 2019;90:10–7. https://doi.org/10.1016/j.dsp.2019.03.003 .
[DOI:
10.1016/j.dsp.2019.03.003]