Technical note: Feasibility of gating for dynamic trajectory radiotherapy - Mechanical accuracy and dosimetric performance.

Hannes A Loebner, Daniel Frauchiger, Silvan Mueller, Gian Guyer, Paul-Henry Mackeprang, Marco F M Stampanoni, Michael K Fix, Peter Manser, Jenny Bertholet
Author Information
  1. Hannes A Loebner: Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. ORCID
  2. Daniel Frauchiger: Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. ORCID
  3. Silvan Mueller: Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. ORCID
  4. Gian Guyer: Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
  5. Paul-Henry Mackeprang: Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. ORCID
  6. Marco F M Stampanoni: Institute for Biomedical Engineering, ETH Zürich and PSI, Villigen, Switzerland. ORCID
  7. Michael K Fix: Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. ORCID
  8. Peter Manser: Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. ORCID
  9. Jenny Bertholet: Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. ORCID

Abstract

BACKGROUND: Dynamic trajectory radiotherapy (DTRT) extends state-of-the-art volumetric modulated arc therapy (VMAT) by dynamic table and collimator rotations during beam-on. The effects of intrafraction motion during DTRT delivery are unknown, especially regarding the possible interplay between patient and machine motion with additional dynamic axes.
PURPOSE: To experimentally assess the technical feasibility and quantify the mechanical and dosimetric accuracy of respiratory gating during DTRT delivery.
METHODS: A DTRT and VMAT plan are created for a clinically motivated lung cancer case and delivered to a dosimetric motion phantom (MP) placed on the table of a TrueBeam system using Developer Mode. The MP reproduces four different 3D motion traces. Gating is triggered using an external marker block, placed on the MP. Mechanical accuracy and delivery time of the VMAT and DTRT deliveries with and without gating are extracted from the logfiles. Dosimetric performance is assessed by means of gamma evaluation (3% global/2 mm, 10% threshold).
RESULTS: The DTRT and VMAT plans are successfully delivered with and without gating for all motion traces. Mechanical accuracy is similar for all experiments with deviations <0.14° (gantry angle), <0.15° (table angle), <0.09° (collimator angle) and <0.08 mm (MLC leaf positions). For DTRT (VMAT), delivery times are 1.6-2.3 (1.6- 2.5) times longer with than without gating for all motion traces except one, where DTRT (VMAT) delivery is 5.0 (3.6) times longer due to a substantial uncorrected baseline drift affecting only DTRT delivery. Gamma passing rates with (without) gating for DTRT/VMAT were ≥96.7%/98.5% (≤88.3%/84.8%). For one VMAT arc without gating it was 99.6%.
CONCLUSION: Gating is successfully applied during DTRT delivery on a TrueBeam system for the first time. Mechanical accuracy is similar for VMAT and DTRT deliveries with and without gating. Gating substantially improved dosimetric performance for DTRT and VMAT.

Keywords

References

Webb S. The Physics of Three-Dimensional Radiation Therapy : Conformal Radiotherapy, Radiosurgery, and Treatment Planning. Taylor & Francis; 1993.
Fix MK, Frei D, Volken W, et al. Part 1: optimization and evaluation of dynamic trajectory radiotherapy. Med Phys. 2018;45(9):4201-4212. doi:10.1002/mp.13086
Bertholet J, Mackeprang PH, Mueller S, et al. Organ-at-risk sparing with dynamic trajectory radiotherapy for head and neck cancer: comparison with volumetric arc therapy on a publicly available library of cases. Radiat Oncol. 2022;17(1):122. doi:10.1186/S13014-022-02092-5
Park J, Park JW, Yea JW. Non-coplanar whole brain radiotherapy is an effective modality for parotid sparing. Yeungnam Univ J Med. 2019;36(1):36. doi:10.12701/YUJM.2019.00087
Kim ST, An HJ, Kim J in, Yoo JR, Kim HJ, Park JM. Non-coplanar VMAT plans for lung SABR to reduce dose to the heart: a planning study. Br J Radiol. 2020;93(1105):20190596. doi:10.1259/bjr.20190596
Sheng K, Shepard DM. Point/counterpoint. Noncoplanar beams improve dosimetry quality for extracranial intensity modulated radiotherapy and should be used more extensively. Med Phys. 2015;42(2):531-533. doi:10.1118/1.4895981
Papp D, Bortfeld T, Unkelbach J. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories. Phys Med Biol. 2015;60(13):5179-5198. doi:10.1088/0031-9155/60/13/5179
Smyth G, Evans PM, Bamber JC, Bedford JL. Recent developments in non-coplanar radiotherapy. Br J Radiol. 2019;92(1097):20180908. doi:10.1259/BJR.20180908
Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822-834. doi:10.1016/S0360-3016(02)02803-1
Mishra P, Li R, St James S, et al. Changes in lung tumor shape during respiration. Phys Med Biol. 2012;57:919-935. doi:10.1088/0031-9155/57/4/919
Huang CY, Tehrani JN, Ng JA, Booth J, Keall P. Six degrees-of-freedom prostate and lung tumor motion measurements using kilovoltage intrafraction monitoring. Int J Radiat Oncol Biol Phys. 2015;91(2):368-375. doi:10.1016/J.IJROBP.2014.09.040
Schmidt ML, Hoffmann L, Knap MM, et al. Cardiac and respiration induced motion of mediastinal lymph node targets in lung cancer patients throughout the radiotherapy treatment course. Radiother Oncol. 2016;121(1):52-58. doi:10.1016/J.RADONC.2016.07.015
Shah AP, Kupelian PA, Waghorn BJ, et al. Real-time tumor tracking in the lung using an electromagnetic tracking system. Int J Radiat Oncol Biol Phys. 2013;86(3):477-483. doi:10.1016/J.IJROBP.2012.12.030
Keall P, Poulsen P, Booth JT. See, think, and act: real-time adaptive radiotherapy. Semin Radiat Oncol. 2019;29(3):228-235. doi:10.1016/J.SEMRADONC.2019.02.005
Anastasi G, Bertholet J, Poulsen P, et al. Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part I: intra-fraction breathing motion management. Radiother Oncol. 2020;153:79-87. doi:10.1016/J.RADONC.2020.06.018
Hoogeman M, Prévost JB, Nuyttens J, Pöll J, Levendag P, Heijmen B. Clinical accuracy of the respiratory tumor tracking system of the CyberKnife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys. 2009;74(1):297-303. doi:10.1016/J.IJROBP.2008.12.041
Depuydt T, Poels K, Verellen D, et al. Initial assessment of tumor tracking with a gimbaled linac system in clinical circumstances: a patient simulation study. Radiother Oncol. 2013;106(2):236-240. doi:10.1016/J.RADONC.2012.12.015
Snyder JE, Flynn RT, Hyer DE. Implementation of respiratory-gated VMAT on a Versa HD linear accelerator. J Appl Clin Med Phys. 2017;18(5):152-161. doi:10.1002/ACM2.12160
Chin E, Loewen SK, Nichol A, Otto K. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung. Phys Med Biol. 2013;58(4):749. doi:10.1088/0031-9155/58/4/749
Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018. http://www.blender.org
Guyer G, Wyss Y, Bertholet J, et al. Development of a collision prediction tool between gantry and table using blender. In: 63rd Annual Meeting & Exhibition of the American Association of Physicists in Medicine (AAPM 2021); 2021. doi:20.500.11850/527838
Suh Y, Dieterich S, Cho B, Keall PJ. An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients. Phys Med Biol. 2008;53(13):3623-3640. doi:10.1088/0031-9155/53/13/016
Colvill E, Booth J, Nill S, et al. A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking. Radiother Oncol. 2016;119(1):159-165. doi:10.1016/J.RADONC.2016.03.006
Worm E, Thomsen JB, Johansen JG, Poulsen PR. OC-0040 gating latencies and resulting geometrical errors at clinical proton and photon accelerators. Radiother Oncol. 2022;170:S13-S15. doi:10.1016/S0167-8140(22)02459-8
Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53-e83. doi:10.1002/MP.12810
Keall PJ, Sawant A, Berbeco RI, et al. AAPM Task Group 264: the safe clinical implementation of MLC tracking in radiotherapy. Med Phys. 2021;48(5):e44-e64. doi:10.1002/MP.14625
Olasolo-Alonso J, Vázquez-Galiñanes A, Pellejero-Pellejero S, Pérez-Azorín JF. Evaluation of MLC performance in VMAT and dynamic IMRT by log file analysis. Physica Medica. 2017;33:87-94. doi:10.1016/J.EJMP.2016.12.013
Smyth G, Evans PM, Bamber JC, et al. Dosimetric accuracy of dynamic couch rotation during volumetric modulated arc therapy (DCR-VMAT) for primary brain tumours. Phys Med Biol. 2019;64(8):08NT01. doi:10.1088/1361-6560/AB0A8E
Agnew A, Agnew CE, Grattan MWD, Hounsell AR, McGarry CK. Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries. Phys Med Biol. 2014;59(9). doi:10.1088/0031-9155/59/9/N49
Huang CY, Keall P, Rice A, Colvill E, Ng JA, Booth JT. Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy. Australas Phys Eng Sci Med. 2017;40(3):643-649. doi:10.1007/S13246-017-0572-0/TABLES/3
Malinowski K, Noel C, Lu W, et al. Development of the 4D Phantom for patient-specific end-to-end radiation therapy QA. J Med Imag. 2007;6510(16):174-182. doi:10.1117/12.713841
Mukumoto N, Nakamura M, Yamada M, et al. Development of a four-axis moving phantom for patient-specific QA of surrogate signal-based tracking IMRT. Med Phys. 2016;43(12):6364-6374. doi:10.1118/1.4966130
Hansen R, Ravkilde T, Worm ES, et al. Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator. Med Phys. 2016;43(5):2387-2398. doi:10.1118/1.4946815
Nankali S, Worm ES, Hansen R, et al. Geometric and dosimetric comparison of four intrafraction motion adaptation strategies for stereotactic liver radiotherapy. Phys Med Biol. 2018;63(14):145010. doi:10.1088/1361-6560/AACDDA

MeSH Term

Humans
Feasibility Studies
Radiotherapy, Intensity-Modulated
Radiometry
Lung
Lung Neoplasms
Radiotherapy Planning, Computer-Assisted
Radiotherapy Dosage

Word Cloud

Similar Articles

Cited By