The effect of duration and time preference on the gap between adult and child health state valuations in time trade-off.

Zhongyu Lang, Arthur E Attema, Stefan A Lipman
Author Information
  1. Zhongyu Lang: Erasmus Centre for Health Economics Rotterdam (EsCHER), Erasmus School of Health Policy and Management (ESHPM), Erasmus University, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands. 76155lzh@eur.nl. ORCID
  2. Arthur E Attema: Erasmus School of Health Policy and Management, Erasmus University, Rotterdam, The Netherlands.
  3. Stefan A Lipman: Erasmus School of Health Policy and Management, Erasmus University, Rotterdam, The Netherlands.

Abstract

Composite time trade-off (cTTO) utilities have been found to be higher when adults value health states for children than for themselves. It is not clear if these differences reflect adults assigning truly higher utilities to the same health state in different perspectives, or if they are caused by other factors, which are not accounted for in the valuation procedure. We test if the difference between children's and adults' cTTO valuations changes if a longer duration than the standard 10 years is used. Personal interviews with a representative sample of 151 adults in the UK were conducted. We employed the cTTO method to estimate utilities of four different health states, where adults considered states both from their own and a 10-year-old child's perspective, for durations of 10 and 20 years. We corrected the cTTO valuations for perspective-specific time preferences in a separate task, again for both perspectives. We replicate the finding that cTTO utilities are higher for the child perspective than for the adult perspective, although the difference is only significant when controlling for other variables in a mixed effects regression. Time preferences are close to 0 on average, and smaller for children than adults. After correcting TTO utilities for time preferences, the effect of perspective is no longer significant. No differences were found for cTTO tasks completed with a 10- or 20-year duration. Our results suggest that the child-adult gap is partially related to differences in time preferences and, hence, that correcting cTTO utilities for these preferences could be useful.

Keywords

References

Value Health. 2010 Dec;13(8):879-84 [PMID: 20659269]
Med Decis Making. 2004 Sep-Oct;24(5):511-7 [PMID: 15359000]
Health Econ. 2022 Aug;31(8):1633-1648 [PMID: 35474364]
Eur J Health Econ. 2012 Aug;13(4):491-500 [PMID: 21573934]
Pharmacoeconomics. 2016 Oct;34(10):993-1004 [PMID: 27084198]
Eur J Health Econ. 2016 Nov;17(8):979-990 [PMID: 26611792]
Eur J Health Econ. 2021 Dec;22(9):1507-1518 [PMID: 34611793]
J Risk Uncertain. 2018;56(2):117-140 [PMID: 31007384]
Qual Life Res. 2012 Feb;21(1):25-34 [PMID: 21505879]
Health Econ. 2019 Jul;28(7):843-854 [PMID: 31237093]
Pharmacoeconomics. 2020 Jul;38(7):653-663 [PMID: 32297224]
Value Health. 2018 Nov;21(11):1291-1298 [PMID: 30442276]
Qual Life Res. 2010 Aug;19(6):875-86 [PMID: 20405245]
Med Decis Making. 1998 Jul-Sep;18(3):268-77 [PMID: 9679991]
Qual Life Res. 2010 Aug;19(6):887-97 [PMID: 20401552]
Eur J Health Econ. 2019 Apr;20(3):419-426 [PMID: 30229374]
Front Health Serv. 2022 Apr 04;2:803109 [PMID: 36925864]
Int J Technol Assess Health Care. 2000 Winter;16(1):137-47 [PMID: 10815360]
Value Health. 2022 Jul;25(7):1185-1195 [PMID: 35232661]
Value Health. 2021 Jul;24(7):976-982 [PMID: 34243841]
Med Decis Making. 2012 Jul-Aug;32(4):583-93 [PMID: 22706639]
Value Health. 2022 Jul;25(7):1087-1089 [PMID: 35667949]
J Exp Psychol Learn Mem Cogn. 1996 May;22(3):771-91 [PMID: 8656156]
Value Health. 2022 Jul;25(7):1174-1184 [PMID: 35168891]
Health Econ. 2000 Mar;9(2):171-5 [PMID: 10721018]
Eur J Health Econ. 2020 Sep;21(7):1091-1103 [PMID: 32506281]
Psychon Bull Rev. 1996 Mar;3(1):100-4 [PMID: 24214810]
Value Health. 2019 Jan;22(1):31-37 [PMID: 30661631]
J Exp Anal Behav. 2001 Sep;76(2):235-43 [PMID: 11599641]
J Clin Epidemiol. 1995 Oct;48(10):1207-14 [PMID: 7561982]
J Exp Psychol Gen. 1988 Mar;117(1):3-20 [PMID: 2966229]
Soc Sci Med. 2022 Sep;309:115227 [PMID: 35969979]
Eur J Health Econ. 2023 Mar;24(2):293-305 [PMID: 35596831]
Value Health. 2023 Nov;26(11):1645-1654 [PMID: 37659690]
Qual Life Res. 2010 May;19(4):489-97 [PMID: 20151207]
Med Decis Making. 2013 Feb;33(2):261-70 [PMID: 23268838]
PLoS Comput Biol. 2013;9(11):e1003335 [PMID: 24277999]
J Health Econ. 2003 May;22(3):445-58 [PMID: 12683961]
Value Health. 2020 May;23(5):642-648 [PMID: 32389230]
J Health Econ. 2009 Jan;28(1):234-43 [PMID: 19062114]
Health Econ. 2009 May;18(5):549-58 [PMID: 18702082]
Health Econ. 2014 Apr;23(4):410-25 [PMID: 23564665]
Health Econ. 2002 Jul;11(5):447-56 [PMID: 12112493]
Eur J Health Econ. 2005 Jun;6(2):107-11 [PMID: 19787847]
Value Health. 2011 Dec;14(8):1117-29 [PMID: 22152182]
Patient. 2021 Sep;14(5):459-469 [PMID: 33345290]
J Exp Psychol Gen. 2009 Aug;138(3):329-40 [PMID: 19653793]
Pharmacoeconomics. 2022 Dec;40(Suppl 2):181-192 [PMID: 36255560]
Health Econ. 2008 Jul;17(7):877-85 [PMID: 18074409]
Value Health. 2016 Jun;19(4):343-52 [PMID: 27325326]
Value Health. 2014 Jun;17(4):445-53 [PMID: 24969006]
Value Health. 2022 Jun 22;: [PMID: 35752534]
Pharmacoeconomics. 2020 Apr;38(4):325-340 [PMID: 31903522]
Med Decis Making. 1997 Jan-Mar;17(1):21-32 [PMID: 8994148]
J Health Econ. 2020 May;71:102318 [PMID: 32229049]

Grants

  1. EQ Project 236-2020RA/EuroQol Research Foundation

MeSH Term

Humans
Male
Female
Adult
Child
Health Status
Time Factors
Middle Aged
United Kingdom
Age Factors
Quality of Life
Child Health
Young Adult
Interviews as Topic
Adolescent
Aged

Word Cloud

Similar Articles

Cited By