Species-level drivers of avian centrality within seed-dispersal networks across different levels of organisation.

Gabriel M Moulatlet, Wesley Dáttilo, Fabricio Villalobos
Author Information
  1. Gabriel M Moulatlet: Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Mexico. ORCID
  2. Wesley Dáttilo: Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Mexico. ORCID
  3. Fabricio Villalobos: Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Mexico. ORCID

Abstract

Bird-plant seed-dispersal networks are structural components of ecosystems. The role of bird species in seed-dispersal networks (from less [peripheral] to more connected [central]), determines the interaction patterns and their ecosystem services. These roles may be driven by morphological and functional traits as well as evolutionary, geographical and environmental properties acting at different spatial extents. It is still unknown if such drivers are equally important in determining species centrality at different network levels, from individual local networks to the global meta-network representing interactions across all local networks. Using 308 networks covering five continents and 11 biogeographical regions, we show that at the global meta-network level species' range size was the most important driver of species centrality, with more central species having larger range sizes, which would facilitate the interaction with a higher number of plants and thus the maintenance of seed-dispersal interactions. At the local network level, body mass was the only driver with a significant effect, implying that local factors related to resource availability are more important at this level of network organisation than those related to broad spatial factors such as range sizes. This could also be related to the mismatch between species-level traits, which do not consider intraspecific variation, and the local networks that can depend on such variation. Taken together, our results show that the drivers determining species centrality are relative to the levels of network organisation, suggesting that prediction of species functional roles in seed-dispersal interactions requires combined local and global approaches.

Keywords

References

Acevedo-Quintero, J. F., Zamora-Abrego, J. G., & García, D. (2020). From structure to function in mutualistic interaction networks: Topologically important frugivores have greater potential as seed dispersers. Journal of Animal Ecology, 89(9), 2181-2191. https://doi.org/10.1111/1365-2656.13273
Arango, A., Pinto-Ledezma, J., Rojas-Soto, O., Lindsay, A. M., Mendenhall, C. D., & Villalobos, F. (2022). Hand-wing index as a surrogate for dispersal ability: The case of the Emberizoidea (Aves: Passeriformes) radiation. Biological Journal of the Linnean Society, 137, 137-144. https://doi.org/10.1093/biolinnean/blac071
Baldiviezo, C. D. V., Passos, M. F. D. O., & De Azevedo, C. S. (2019). Knowledge gaps regarding frugivorous ecological networks between birds and plants in Brazil. Papéis Avulsos de Zoologia, 59, e20195954. https://doi.org/10.11606/1807-0205/2019.59.54
Barnagaud, J.-Y., Daniel Kissling, W., Sandel, B., Eiserhardt, W. L., Şekercioğlu, Ç. H., Enquist, B. J., Tsirogiannis, C., & Svenning, J.-C. (2014). Ecological traits influence the phylogenetic structure of bird species co-occurrences worldwide. Ecology Letters, 17(7), 811-820. https://doi.org/10.1111/ele.12285
Barton, K. (2018). Mu-MIn: Multi-model inference (1.42.1) [R package version]. https://CRAN.R-project.org/package=MuMIn
Bastazini, V. A., Debastiani, V. J., Azambuja, B. O., Guimarães, P. R., & Pillar, V. D. (2019). Loss of generalist plant species and functional diversity decreases the robustness of a seed dispersal network. Environmental Conservation, 46(1), 52-58. https://doi.org/10.1017/S0376892918000334
Bender, I. M. A., Kissling, W. D., Blendinger, P. G., Böhning-Gaese, K., Hensen, I., Kühn, I., Muñoz, M. C., Neuschulz, E. L., Nowak, L., Quitián, M., Saavedra, F., Santillán, V., Töpfer, T., Wiegand, T., Dehling, D. M., & Schleuning, M. (2018). Morphological trait matching shapes plant-frugivore networks across the Andes. Ecography, 41(11), 1910-1919. https://doi.org/10.1111/ecog.03396
Burin, G., Guimarães, P. R., & Quental, T. B. (2021). Macroevolutionary stability predicts interaction patterns of species in seed dispersal networks. Science, 372(6543), 733-737. https://doi.org/10.1126/science.abf0556
Callaghan, C. T., Nakagawa, S., & Cornwell, W. K. (2021). Global abundance estimates for 9,700 bird species. Proceedings of the National Academy of Sciences of the United States of America, 118(21), e2023170118. https://doi.org/10.1073/pnas.2023170118
Chamberlain, S. A., & Szöcs, E. (2013). taxize: Taxonomic search and retrieval in R. F1000Research, 2, 191. https://doi.org/10.12688/f1000research.2-191.v2
Claramunt, S., Hong, M., & Bravo, A. (2022). The effect of flight efficiency on gap-crossing ability in Amazonian forest birds. Biotropica, 54(4), 860-868. https://doi.org/10.1111/btp.13109
Coux, C., Rader, R., Bartomeus, I., & Tylianakis, J. M. (2016). Linking species functional roles to their network roles. Ecology Letters, 19(7), 762-770. https://doi.org/10.1111/ele.12612
Cruz, C. P., Luna, P., Guevara, R., Hinojosa-Díaz, I. A., Villalobos, F., & Dáttilo, W. (2022). Climate and human influence shape the interactive role of the honeybee in pollination networks beyond its native distributional range. Basic and Applied Ecology, 63, 186-195. https://doi.org/10.1016/j.baae.2022.06.009
Dáttilo, W., Barrozo-Chávez, N., Lira-Noriega, A., Guevara, R., Villalobos, F., Santiago-Alarcon, D., Neves, F. S., Izzo, T., & Ribeiro, S. P. (2020). Species-level drivers of mammalian ectoparasite faunas. Journal of Animal Ecology, 89(8), 1754-1765. https://doi.org/10.1111/1365-2656.13216
Dáttilo, W., Cruz, C. P., Luna, P., Ratoni, B., Hinojosa-Díaz, I. A., Neves, F. S., Leponce, M., Villalobos, F., & Guevara, R. (2022). The impact of the honeybee Apis mellifera on the Organization of Pollination Networks is positively related with its interactive role throughout its geographic range. Diversity, 14(11), Article 11. https://doi.org/10.3390/d14110917
Dáttilo, W., Lara-Rodríguez, N., Jordano, P., Guimarães, P. R., Thompson, J. N., Marquis, R. J., Medeiros, L. P., Ortiz-Pulido, R., Marcos-García, M. A., & Rico-Gray, V. (2016). Unravelling Darwin's entangled bank: Architecture and robustness of mutualistic networks with multiple interaction types. Proceedings of the Royal Society B: Biological Sciences, 283(1843), 20161564. https://doi.org/10.1098/rspb.2016.1564
Dehling, D. M., Jordano, P., Schaefer, H. M., Böhning-Gaese, K., & Schleuning, M. (2016). Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions. Proceedings of the Royal Society B: Biological Sciences, 283(1823), 20152444. https://doi.org/10.1098/rspb.2015.2444
Dehling, D. M., Töpfer, T., Schaefer, H. M., Jordano, P., Böhning-Gaese, K., & Schleuning, M. (2014). Functional relationships beyond species richness patterns: Trait matching in plant-bird mutualisms across scales. Global Ecology and Biogeography, 23(10), 1085-1093. https://doi.org/10.1111/geb.12193
Dolédec, S., Chessel, D., & Gimaret-Carpentier, C. (2000). Niche separation in community analysis: A new method. Ecology, 81(10), 2914-2927. https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
Dormann, C. F. (2011). How to be a specialist? Quantifying specialisation in pollination networks. Network Biology, 1(1), 1-20.
Emer, C., Galetti, M., Pizo, M. A., Guimarães, P. R., Jr., Moraes, S., Piratelli, A., & Jordano, P. (2018). Seed-dispersal interactions in fragmented landscapes-A metanetwork approach. Ecology Letters, 21(4), 484-493. https://doi.org/10.1111/ele.12909
Escribano-Avila, G., Lara-Romero, C., Heleno, R., & Traveset, A. (2018). Tropical seed dispersal networks: Emerging patterns, biases, and keystone species traits. In W. Dáttilo & V. Rico-Gray (Eds.), Ecological networks in the tropics: An integrative overview of species interactions from some of the Most species-rich habitats on earth (pp. 93-110). Springer International Publishing. https://doi.org/10.1007/978-3-319-68228-0_7
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
Fleming, T. H., & John Kress, W. (2011). A brief history of fruits and frugivores. Acta Oecologica, 37(6), 521-530. https://doi.org/10.1016/j.actao.2011.01.016
Fricke, E. C., & Svenning, J.-C. (2020). Accelerating homogenization of the global plant-frugivore meta-network. Nature, 585(7823), 74-78. https://doi.org/10.1038/s41586-020-2640-y
Guimarães, P. R., Jr., Jordano, P., & Thompson, J. N. (2011). Evolution and coevolution in mutualistic networks. Ecology Letters, 14(9), 877-885. https://doi.org/10.1111/j.1461-0248.2011.01649.x
Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33, 1-22. https://doi.org/10.18637/jss.v033.i02
Hagen, M., Kissling, W. D., Rasmussen, C., De Aguiar, M. A. M., Brown, L. E., Carstensen, D. W., Alves-Dos-Santos, I., Dupont, Y. L., Edwards, F. K., Genini, J., Guimarães, P. R., Jenkins, G. B., Jordano, P., Kaiser-Bunbury, C. N., Ledger, M. E., Maia, K. P., Marquitti, F. M. D., Mclaughlin, Ó., Morellato, L. P. C., … Olesen, J. M. (2012). 2-Biodiversity, species interactions and ecological networks in a fragmented world. In U. Jacob & G. Woodward (Eds.), Advances in ecological research (Vol. 46, pp. 89-210). Academic Press. https://doi.org/10.1016/B978-0-12-396992-7.00002-2
Holt, B. G., Lessard, J.-P., Borregaard, M. K., Fritz, S. A., Araújo, M. B., Dimitrov, D., Fabre, P.-H., Graham, C. H., Graves, G. R., Jønsson, K. A., Nogués-Bravo, D., Wang, Z., Whittaker, R. J., Fjeldså, J., & Rahbek, C. (2013). An update of Wallace's zoogeographic regions of the world. Science, 339(6115), 74-78. https://doi.org/10.1126/science.1228282
Hooper, D. U., Chapin, F. S., III, Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., & Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75(1), 3-35. https://doi.org/10.1890/04-0922
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), Article 7424. https://doi.org/10.1038/nature11631
Jordano, P. (2017). What is long-distance dispersal? And a taxonomy of dispersal events. Journal of Ecology, 105(1), 75-84. https://doi.org/10.1111/1365-2745.12690
Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters, 6(1), 69-81. https://doi.org/10.1046/j.1461-0248.2003.00403.x
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463-1464. https://doi.org/10.1093/bioinformatics/btq166
Laurindo, R. D. S., Vizentin-Bugoni, J., Tavares, D. C., Mancini, M. C. S., Mello, R. D. M., & Gregorin, R. (2020). Drivers of bat roles in neotropical seed dispersal networks: Abundance is more important than functional traits. Oecologia, 193(1), 189-198. https://doi.org/10.1007/s00442-020-04662-4
Lenz, J., Fiedler, W., Caprano, T., Friedrichs, W., Gaese, B. H., Wikelski, M., & Böhning-Gaese, K. (2011). Seed-dispersal distributions by trumpeter hornbills in fragmented landscapes. Proceedings of the Royal Society B: Biological Sciences, 278(1716), 2257-2264. https://doi.org/10.1098/rspb.2010.2383
Lever, J. J., van Nes, E. H., Scheffer, M., & Bascompte, J. (2014). The sudden collapse of pollinator communities. Ecology Letters, 17(3), 350-359. https://doi.org/10.1111/ele.12236
Loiseau, N., Mouquet, N., Casajus, N., Grenié, M., Guéguen, M., Maitner, B., Mouillot, D., Ostling, A., Renaud, J., Tucker, C., Velez, L., Thuiller, W., & Violle, C. (2020). Global distribution and conservation status of ecologically rare mammal and bird species. Nature Communications, 11, 5071. https://doi.org/10.1038/s41467-020-18779-w
Maia, K. P., Rasmussen, C., Olesen, J. M., & Guimarães, P. R. (2019). Does the sociality of pollinators shape the organisation of pollination networks? Oikos, 128(5), 741-752. https://doi.org/10.1111/oik.05387
Martín González, A. M., Dalsgaard, B., & Olesen, J. M. (2010). Centrality measures and the importance of generalist species in pollination networks. Ecological Complexity, 7(1), 36-43. https://doi.org/10.1016/j.ecocom.2009.03.008
Martins, L. P., Stouffer, D. B., Blendinger, P. G., Böhning-Gaese, K., Buitrón-Jurado, G., Correia, M., Costa, J. M., Dehling, D. M., Donatti, C. I., Emer, C., Galetti, M., Heleno, R., Jordano, P., Menezes, Í., Morante-Filho, J. C., Muñoz, M. C., Neuschulz, E. L., Pizo, M. A., Quitián, M., … Tylianakis, J. M. (2022). Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions. Nature Communications, 13, 6943. https://doi.org/10.1038/s41467-022-34355-w
Medeiros, L. P., Garcia, G., Thompson, J. N., & Guimarães, P. R. (2018). The geographic mosaic of coevolution in mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 115(47), 12017-12022. https://doi.org/10.1073/pnas.1809088115
Mello, M. A. R., Rodrigues, F. A., Costa, L. D. F., Kissling, W. D., Şekercioğlu, Ç. H., Marquitti, F. M. D., & Kalko, E. K. V. (2015). Keystone species in seed dispersal networks are mainly determined by dietary specialization. Oikos, 124(8), 1031-1039. https://doi.org/10.1111/oik.01613
Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C. E. T., Renaud, J., & Thuiller, W. (2013). Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology, 11(5), e1001569. https://doi.org/10.1371/journal.pbio.1001569
Moulatlet, G. M., Dáttilo, W., & Villalobos, F. (2023). Data from: Species-level drivers of avian centrality within seed-dispersal networks across different levels of organization. Figshare Digital Repository. https://figshare.com/s/6d409efbed4f9d0c239e
Muñoz, G., Trøjelsgaard, K., & Kissling, W. D. (2019). A synthesis of animal-mediated seed dispersal of palms reveals distinct biogeographical differences in species interactions. Journal of Biogeography, 46(2), 466-484. https://doi.org/10.1111/jbi.13493
Oldham, S., Fulcher, B., Parkes, L., Arnatkevic̆iūtė, A., Suo, C., & Fornito, A. (2019). Consistency and differences between centrality measures across distinct classes of networks. PLoS ONE, 14(7), e0220061. https://doi.org/10.1371/journal.pone.0220061
Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19891-19896. https://doi.org/10.1073/pnas.0706375104
Palacio, R. D., Valderrama-Ardila, C., & Kattan, G. H. (2016). Generalist species have a central role in a highly diverse plant-frugivore network. Biotropica, 48(3), 349-355. https://doi.org/10.1111/btp.12290
Pejchar, L. (2015). Introduced birds incompletely replace seed dispersal by a native frugivore. AoB PLANTS, 7, plv072. https://doi.org/10.1093/aobpla/plv072
Penman, Z., Deeming, D. C., & Soulsbury, C. D. (2022). Ecological and life-history correlates of erythrocyte size and shape in Lepidosauria. Journal of Evolutionary Biology, 35(5), 708-718. https://doi.org/10.1111/jeb.14004
Peralta, G., Perry, G. L. W., Vázquez, D. P., Dehling, D. M., & Tylianakis, J. M. (2020). Strength of niche processes for species interactions is lower for generalists and exotic species. Journal of Animal Ecology, 89(9), 2145-2155. https://doi.org/10.1111/1365-2656.13274
Pigot, A. L., Bregman, T., Sheard, C., Daly, B., Etienne, R. S., & Tobias, J. A. (2016). Quantifying species contributions to ecosystem processes: A global assessment of functional trait and phylogenetic metrics across avian seed-dispersal networks. Proceedings of the Royal Society B: Biological Sciences, 283(1844), 20161597. https://doi.org/10.1098/rspb.2016.1597
Pollock, H. S., Toms, J. D., Tarwater, C. E., Benson, T. J., Karr, J. R., & Brawn, J. D. (2022). Long-term monitoring reveals widespread and severe declines of understory birds in a protected neotropical forest. Proceedings of the National Academy of Sciences of the United States of America, 119(16), e2108731119. https://doi.org/10.1073/pnas.2108731119
Ruggera, R. A., Blendinger, P. G., Gomez, M. D., & Marshak, C. (2016). Linking structure and functionality in mutualistic networks: Do core frugivores disperse more seeds than peripheral species? Oikos, 125(4), 541-555. https://doi.org/10.1111/oik.02204
Salavaty, A., Ramialison, M., & Currie, P. D. (2020). Integrated value of influence: An integrative method for the identification of the most influential nodes within networks. Patterns, 1(5), 100052. https://doi.org/10.1016/j.patter.2020.100052
Sales, L. P., Kissling, W. D., Galetti, M., Naimi, B., & Pires, M. M. (2021). Climate change reshapes the eco-evolutionary dynamics of a neotropical seed dispersal system. Global Ecology and Biogeography, 30(5), 1129-1138. https://doi.org/10.1111/geb.13271
Sazima, C., Guimarães, P. R., Jr., Dos Reis, S. F., & Sazima, I. (2010). What makes a species central in a cleaning mutualism network? Oikos, 119(8), 1319-1325. https://doi.org/10.1111/j.1600-0706.2009.18222.x
Schleuning, M., Blüthgen, N., Flörchinger, M., Braun, J., Schaefer, H. M., & Böhning-Gaese, K. (2011). Specialization and interaction strength in a tropical plant-frugivore network differ among forest strata. Ecology, 92(1), 26-36. https://doi.org/10.1890/09-1842.1
Schleuning, M., Fründ, J., & García, D. (2015). Predicting ecosystem functions from biodiversity and mutualistic networks: An extension of trait-based concepts to plant-animal interactions. Ecography, 38(4), 380-392. https://doi.org/10.1111/ecog.00983
Schleuning, M., Fründ, J., Schweiger, O., Welk, E., Albrecht, J., Albrecht, M., Beil, M., Benadi, G., Blüthgen, N., Bruelheide, H., Böhning-Gaese, K., Dehling, D. M., Dormann, C. F., Exeler, N., Farwig, N., Harpke, A., Hickler, T., Kratochwil, A., Kuhlmann, M., … Hof, C. (2016). Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 7(1), 13965. https://doi.org/10.1038/ncomms13965
Sebastián-González, E. (2017). Drivers of species' role in avian seed-dispersal mutualistic networks. Journal of Animal Ecology, 86(4), 878-887. https://doi.org/10.1111/1365-2656.12686
Sheard, C., Neate-Clegg, M. H. C., Alioravainen, N., Jones, S. E. I., Vincent, C., MacGregor, H. E. A., Bregman, T. P., Claramunt, S., & Tobias, J. A. (2020). Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nature. Communications, 11(1), 2463. https://doi.org/10.1038/s41467-020-16313-6
Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predicts geographical range size: A general ecological pattern. Ecology Letters, 16(8), 1104-1114. https://doi.org/10.1111/ele.12140
Sonne, J., Maruyama, P. K., Martín González, A. M., Rahbek, C., Bascompte, J., & Dalsgaard, B. (2022). Extinction, coextinction and colonization dynamics in plant-hummingbird networks under climate change. Nature Ecology & Evolution, 6(6), 720-729. https://doi.org/10.1038/s41559-022-01693-3
Tella, J. L., Baños-Villalba, A., Hernández-Brito, D., Rojas, A., Pacífico, E., Díaz-Luque, J. A., Carrete, M., Blanco, G., & Hiraldo, F. (2015). Parrots as overlooked seed dispersers. Frontiers in Ecology and the Environment, 13(6), 338-339. https://doi.org/10.1890/1540-9295-13.6.338
Title, P. O., & Rabosky, D. L. (2019). Tip rates, phylogenies and diversification: What are we estimating, and how good are the estimates? Methods in Ecology and Evolution, 10(6), 821-834. https://doi.org/10.1111/2041-210X.13153
Tobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., Marples, N. M., Montaño-Centellas, F. A., Leandro-Silva, V., Claramunt, S., … Schleuning, M. (2022). AVONET: Morphological, ecological and geographical data for all birds. Ecology Letters, 25(3), 581-597. https://doi.org/10.1111/ele.13898
Vidal, M. M., Hasui, E., Pizo, M. A., Tamashiro, J. Y., Silva, W. R., & Guimarães, P. R., Jr. (2014). Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology, 95(12), 3440-3447. https://doi.org/10.1890/13-1584.1
Vidal, M. M., Pires, M. M., & Guimarães, P. R. (2013). Large vertebrates as the missing components of seed-dispersal networks. Biological Conservation, 163, 42-48. https://doi.org/10.1016/j.biocon.2013.03.025
Vilela, B., & Villalobos, F. (2015). letsR: A new R package for data handling and analysis in macroecology. Methods in Ecology and Evolution, 6(10), 1229-1234. https://doi.org/10.1111/2041-210X.12401
Vizentin-Bugoni, J., Tarwater, C. E., Foster, J. T., Drake, D. R., Gleditsch, J. M., Hruska, A. M., Kelley, J. P., & Sperry, J. H. (2019). Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawaiʻi. Science, 364(6435), 78-82. https://doi.org/10.1126/science.aau8751
Winkler, D. W., Billerman, S. M., & Lovette, I. J. (2020a). Tanagers and allies (Thraupidae), version 1.0. Birds of the World. https://doi.org/10.2173/bow.thraup2.01
Winkler, D. W., Billerman, S. M., & Lovette, I. J. (2020b). Thrushes and allies (Turdidae), version 1.0. Birds of the World. https://doi.org/10.2173/bow.turdid1.01
Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. (2005). Body size in ecological networks. Trends in Ecology & Evolution, 20(7), 402-409. https://doi.org/10.1016/j.tree.2005.04.005

MeSH Term

Animals
Ecosystem
Birds
Seeds
Plants
Seed Dispersal

Word Cloud

Similar Articles

Cited By