Targeting polyploid giant cancer cells potentiates a therapeutic response and overcomes resistance to PARP inhibitors in ovarian cancer.

Xudong Zhang, Jun Yao, Xiaoran Li, Na Niu, Yan Liu, Richard A Hajek, Guang Peng, Shannon Westin, Anil K Sood, Jinsong Liu
Author Information
  1. Xudong Zhang: Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. ORCID
  2. Jun Yao: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. ORCID
  3. Xiaoran Li: Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. ORCID
  4. Na Niu: Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
  5. Yan Liu: Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. ORCID
  6. Richard A Hajek: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
  7. Guang Peng: Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. ORCID
  8. Shannon Westin: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. ORCID
  9. Anil K Sood: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. ORCID
  10. Jinsong Liu: Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. ORCID

Abstract

To understand the mechanism of acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) olaparib, we induced the formation of polyploid giant cancer cells (PGCCs) in ovarian and breast cancer cell lines, high-grade serous cancer (HGSC)-derived organoids, and patient-derived xenografts (PDXs). Time-lapse tracking of ovarian cancer cells revealed that PGCCs primarily developed from endoreplication after exposure to sublethal concentrations of olaparib. PGCCs exhibited features of senescent cells but, after olaparib withdrawal, can escape senescence via restitutional multipolar endomitosis and other noncanonical modes of cell division to generate mitotically competent resistant daughter cells. The contraceptive drug mifepristone blocked PGCC formation and daughter cell formation. Mifepristone/olaparib combination therapy substantially reduced tumor growth in PDX models without previous olaparib exposure, while mifepristone alone decreased tumor growth in PDX models with acquired olaparib resistance. Thus, targeting PGCCs may represent a promising approach to potentiate the therapeutic response to PARPi and overcome PARPi-induced resistance.

References

  1. Oncogene. 2010 Sep 2;29(35):4905-13 [PMID: 20581869]
  2. Br J Cancer. 2017 Apr 25;116(9):1186-1194 [PMID: 28334734]
  3. Cancer Res. 2021 May 15;81(10):2774-2787 [PMID: 33514515]
  4. Cancer Res. 2003 Jun 1;63(11):2705-15 [PMID: 12782571]
  5. Curr Cancer Drug Targets. 2019;19(5):360-367 [PMID: 29968537]
  6. J Pathol Clin Res. 2016 Jul 13;2(4):247-258 [PMID: 27840695]
  7. Aging Cell. 2006 Apr;5(2):187-95 [PMID: 16626397]
  8. Cancer Res. 2018 May 1;78(9):2318-2331 [PMID: 29440172]
  9. Mol Cancer Res. 2019 Dec;17(12):2492-2507 [PMID: 31537618]
  10. Front Genet. 2014 Apr 23;5:92 [PMID: 24795754]
  11. Semin Cancer Biol. 2020 Feb;60:380-397 [PMID: 31521747]
  12. Cancer Res. 2002 Mar 15;62(6):1876-83 [PMID: 11912168]
  13. Nat Rev Cancer. 2015 Jul;15(7):397-408 [PMID: 26105537]
  14. Cell Biol Int. 2000;24(9):635-48 [PMID: 10964453]
  15. Cancer Res. 2014 Dec 1;74(23):6980-90 [PMID: 25304260]
  16. Nature. 2016 Jul 20;535(7612):382-7 [PMID: 27443740]
  17. Science. 2017 Mar 17;355(6330):1152-1158 [PMID: 28302823]
  18. Lancet. 2017 Oct 28;390(10106):1949-1961 [PMID: 28916367]
  19. Biochem J. 2013 Feb 1;449(3):605-12 [PMID: 23126280]
  20. Cell. 2008 Feb 8;132(3):487-98 [PMID: 18267078]
  21. Nat Rev Clin Oncol. 2021 Dec;18(12):773-791 [PMID: 34285417]
  22. Nature. 2011 Jun 29;474(7353):609-15 [PMID: 21720365]
  23. Semin Cancer Biol. 2018 Dec;53:1-16 [PMID: 30040989]
  24. Oncogenesis. 2021 Sep 29;10(9):65 [PMID: 34588424]
  25. Clin Cancer Res. 2007 Jun 1;13(11):3370-9 [PMID: 17545545]
  26. N Engl J Med. 2016 Dec;375(22):2154-2164 [PMID: 27717299]
  27. Semin Cancer Biol. 2022 Jun;81:232-240 [PMID: 33610722]
  28. Clin Exp Metastasis. 2019 Apr;36(2):97-108 [PMID: 30810874]
  29. Semin Cancer Biol. 2022 Jun;81:176-192 [PMID: 34116161]
  30. Br J Cancer. 1997;76(4):474-9 [PMID: 9275024]
  31. Oncogene. 2017 Aug 24;36(34):4887-4900 [PMID: 28436947]
  32. Lancet Oncol. 2011 Sep;12(9):852-61 [PMID: 21862407]
  33. Mol Carcinog. 2010 Jan;49(1):13-24 [PMID: 19676105]
  34. Nature. 2005 Apr 14;434(7035):913-7 [PMID: 15829966]
  35. Semin Cancer Biol. 2022 Jun;81:132-144 [PMID: 34670140]
  36. Nat Med. 2019 May;25(5):838-849 [PMID: 31011202]
  37. Int J Cancer. 2014 Feb 1;134(3):508-18 [PMID: 23754740]
  38. Cancer Res. 1992 Aug 1;52(15):4196-9 [PMID: 1638534]
  39. Cancer Discov. 2018 Nov;8(11):1404-1421 [PMID: 30213835]
  40. Cancer Res. 2011 Mar 1;71(5):1858-70 [PMID: 21363922]
  41. Cold Spring Harb Protoc. 2016 Oct 3;2016(10): [PMID: 27698234]
  42. Cell. 2018 Jan 11;172(1-2):373-386.e10 [PMID: 29224780]
  43. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7 [PMID: 7568133]
  44. Annu Rev Med. 1997;48:129-56 [PMID: 9046951]
  45. Clin Cancer Res. 2011 Dec 15;17(24):7704-11 [PMID: 22184286]
  46. PLoS One. 2014 Jun 16;9(6):e99143 [PMID: 24932611]
  47. Aging Cell. 2017 Oct;16(5):1043-1050 [PMID: 28699239]
  48. BMC Cancer. 2006 Dec 06;6:276 [PMID: 17150101]
  49. Nat Commun. 2018 May 10;9(1):1849 [PMID: 29748565]
  50. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17079-84 [PMID: 18971340]
  51. Cancer Biol Ther. 2004 Feb;3(2):207-18 [PMID: 14726689]
  52. J Cell Sci. 2017 Apr 15;130(8):1404-1412 [PMID: 28232523]
  53. PLoS Med. 2008 Dec 2;5(12):e232 [PMID: 19053170]
  54. Cancer Discov. 2015 Nov;5(11):1137-54 [PMID: 26463832]
  55. Oncogenesis. 2016 Dec 19;5(12):e281 [PMID: 27991913]
  56. Contraception. 2010 Nov;82(5):442-52 [PMID: 20933118]
  57. Semin Cancer Biol. 2022 Jun;81:160-175 [PMID: 33189848]
  58. Cold Spring Harb Protoc. 2016 Jul 01;2016(7): [PMID: 27371595]
  59. BMC Cancer. 2012 Jun 22;12:200 [PMID: 22642877]
  60. Oncogene. 2023 Feb;42(9):665-678 [PMID: 36596845]
  61. Oncogene. 2014 Jan 2;33(1):116-28 [PMID: 23524583]
  62. Genes Cancer. 2016 Mar;7(3-4):60-72 [PMID: 27382431]
  63. Semin Cancer Biol. 2022 Jun;81:1-4 [PMID: 34695579]
  64. Lancet Oncol. 2017 Sep;18(9):1274-1284 [PMID: 28754483]
  65. Cell. 2001 May 4;105(3):297-306 [PMID: 11348589]
  66. Toxicol Sci. 2012 May;127(1):139-49 [PMID: 22331493]
  67. Mol Cell. 2015 Sep 3;59(5):719-31 [PMID: 26300260]
  68. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5541-6 [PMID: 15809428]

Grants

  1. P30 CA016672/NCI NIH HHS
  2. P50 CA217685/NCI NIH HHS

MeSH Term

Polyploidy
Ovarian Neoplasms
Poly(ADP-ribose) Polymerase Inhibitors
Humans
Female
Mifepristone
Drug Resistance, Neoplasm
Cellular Senescence
Cell Line, Tumor
Apoptosis

Chemicals

Poly(ADP-ribose) Polymerase Inhibitors
Mifepristone
olaparib