Functionalized Metal Nanoparticles in Cancer Therapy.

Paola Trinidad Villalobos Gutiérrez, José Luis Muñoz Carrillo, Cuauhtémoc Sandoval Salazar, Juan Manuel Viveros Paredes, Oscar Gutiérrez Coronado
Author Information
  1. Paola Trinidad Villalobos Gutiérrez: Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico. ORCID
  2. José Luis Muñoz Carrillo: Área de Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico. ORCID
  3. Cuauhtémoc Sandoval Salazar: División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico. ORCID
  4. Juan Manuel Viveros Paredes: Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico. ORCID
  5. Oscar Gutiérrez Coronado: Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico. ORCID

Abstract

Currently, there are many studies on the application of nanotechnology in therapy. Metallic nanoparticles are promising nanomaterials in cancer therapy; however, functionalization of these nanoparticles with biomolecules has become relevant as their effect on cancer cells is considerably increased by photothermal and photodynamic therapies, drug nanocarriers, and specificity by antibodies, resulting in new therapies that are more specific against different types of cancer. This review describes studies on the effect of functionalized palladium, gold, silver and platinum nanoparticles in the treatment of cancer, these nanoparticles themselves show an anticancer effect. This effect is further enhanced when the NPs are functionalized with either antibodies, DNA, RNA, peptides, proteins, or folic acid and other molecules. These NPs can penetrate the cell and accumulate in the tumor tissue, resulting in a cytotoxic effect through the generation of ROS, the induction of apoptosis, cell cycle arrest, DNA fragmentation, and a photothermal effect. NP-based therapy is a new strategy that can be used synergistically with chemotherapy and radiotherapy to achieve more effective therapies and reduce side effects.

Keywords

References

Nanotheranostics. 2023 Jan 9;7(2):152-166 [PMID: 36793347]
Nanomedicine. 2015 Apr;11(3):731-9 [PMID: 25546848]
Nanomaterials (Basel). 2022 Aug 17;12(16): [PMID: 36014691]
Cancer Epidemiol Biomarkers Prev. 2016 Jan;25(1):16-27 [PMID: 26667886]
SAGE Open Med. 2021 Aug 12;9:20503121211034366 [PMID: 34408877]
Nanomedicine (Lond). 2016 Dec;11(23):3103-3115 [PMID: 27809656]
J Biol Inorg Chem. 2018 May;23(3):331-345 [PMID: 29453558]
Mol Pharm. 2010 Dec 6;7(6):2194-206 [PMID: 20973534]
Cancer Biol Ther. 2012 Apr;13(6):369-78 [PMID: 22313637]
Nat Rev Drug Discov. 2021 Feb;20(2):101-124 [PMID: 33277608]
ACS Appl Mater Interfaces. 2019 Nov 20;11(46):42998-43017 [PMID: 31664808]
Colloids Surf B Biointerfaces. 2019 Apr 1;176:265-275 [PMID: 30623814]
Biomed Pharmacother. 2023 Jan;157:113998 [PMID: 36399829]
Mater Sci Eng C Mater Biol Appl. 2020 Mar;108:110375 [PMID: 31924026]
Pharmaceutics. 2021 Mar 21;13(3): [PMID: 33801142]
Acta Pharm Sin B. 2021 Apr;11(4):903-924 [PMID: 33996406]
Toxicol Lett. 2011 Feb 25;201(1):92-100 [PMID: 21182908]
Front Bioeng Biotechnol. 2020 Mar 04;8:132 [PMID: 32195232]
Appl Microbiol Biotechnol. 2012 Jun;94(5):1199-208 [PMID: 22406860]
RSC Adv. 2022 Aug 22;12(37):23786-23795 [PMID: 36093248]
Exp Mol Med. 2013 Oct 04;45:e45 [PMID: 24091747]
J Adv Res. 2017 Nov 02;9:1-16 [PMID: 30046482]
J Biomed Nanotechnol. 2017 Nov 1;13(11):1457-1467 [PMID: 31271132]
Bioconjug Chem. 2019 Dec 18;30(12):3078-3086 [PMID: 31730333]
Int J Mol Sci. 2022 Feb 01;23(3): [PMID: 35163607]
Aging (Albany NY). 2022 Aug 19;14(16):6642-6655 [PMID: 35985770]
J Nanobiotechnology. 2016 Feb 27;14:13 [PMID: 26921130]
Cancers (Basel). 2019 May 08;11(5): [PMID: 31072061]
Int J Mol Sci. 2022 Jul 12;23(14): [PMID: 35887030]
Front Pharmacol. 2022 Feb 23;13:797804 [PMID: 35281900]
Curr Top Med Chem. 2019;19(27):2507-2523 [PMID: 31775591]
Biomolecules. 2021 Dec 09;11(12): [PMID: 34944493]
Colloids Surf B Biointerfaces. 2022 Mar;211:112287 [PMID: 34952283]
Int J Cancer. 2021 Apr 5;: [PMID: 33818764]
RNA Biol. 2012 Jun;9(6):703-19 [PMID: 22664915]
Pharmaceutics. 2022 Nov 21;14(11): [PMID: 36432732]
Emergent Mater. 2022;5(6):1593-1615 [PMID: 35005431]
RSC Adv. 2021 Jan 25;11(8):4818-4828 [PMID: 35424411]
Sci Rep. 2017 Sep 7;7(1):10844 [PMID: 28883419]
Nanomedicine (Lond). 2021 Jan;16(2):121-138 [PMID: 33426900]
Colloids Surf B Biointerfaces. 2016 May 1;141:158-169 [PMID: 26852099]
J Nanobiotechnology. 2021 May 5;19(1):128 [PMID: 33952242]
J Control Release. 2022 May;345:811-818 [PMID: 35378214]
Molecules. 2021 Jan 22;26(3): [PMID: 33499047]
Theranostics. 2020 Apr 6;10(12):5195-5208 [PMID: 32373207]
Nanoscale. 2010 Dec;2(12):2607-13 [PMID: 20936240]
Int J Nanomedicine. 2022 Sep 16;17:4321-4337 [PMID: 36147546]
J Mater Chem B. 2020 Apr 8;8(14):2862-2875 [PMID: 32186317]
Sci Rep. 2022 Feb 22;12(1):3023 [PMID: 35194138]
Int J Mol Sci. 2022 Jan 13;23(2): [PMID: 35055024]
Bioconjug Chem. 2021 Aug 18;32(8):1667-1674 [PMID: 34323473]
Diabetol Metab Syndr. 2011 Jun 15;3(1):11 [PMID: 21676260]
Bioimpacts. 2020;10(1):27-36 [PMID: 31988854]
Nanoscale. 2015 Aug 14;7(30):12921-31 [PMID: 26166696]
Adv Colloid Interface Sci. 2023 Apr;314:102871 [PMID: 36958181]
J Hematol Oncol. 2021 May 31;14(1):85 [PMID: 34059100]
Sci Rep. 2018 Jan 11;8(1):500 [PMID: 29323212]
Neurol Res. 2020 Dec;42(12):1061-1069 [PMID: 32715947]
Int J Mol Sci. 2020 Apr 03;21(7): [PMID: 32260051]
Langmuir. 2020 Oct 13;36(40):11765-11775 [PMID: 32931295]
Int J Mol Sci. 2020 Feb 27;21(5): [PMID: 32120829]
Colloids Surf B Biointerfaces. 2018 May 23;169:429-437 [PMID: 29843117]
J Nanobiotechnology. 2014 Dec 19;12:59 [PMID: 25524171]
Curr Pharm Des. 2020;26(26):3141-3146 [PMID: 32175835]
Pharmaceutics. 2022 May 08;14(5): [PMID: 35631598]
Int J Mol Sci. 2016 Sep 13;17(9): [PMID: 27649147]
Int J Nanomedicine. 2016 Jun 07;11:2633-9 [PMID: 27354794]
Cancers (Basel). 2010 Nov 18;2(4):1911-28 [PMID: 24281209]
ACS Appl Mater Interfaces. 2011 Feb;3(2):218-28 [PMID: 21280584]
Photodiagnosis Photodyn Ther. 2018 Mar;21:201-210 [PMID: 29223737]
Small. 2011 Jul 18;7(14):1919-31 [PMID: 21695781]
Int J Radiat Biol. 2016 Nov;92(11):716-723 [PMID: 26999580]
Sci Rep. 2017 Jul 12;7(1):5178 [PMID: 28701707]
Materials (Basel). 2020 Jan 14;13(2): [PMID: 31947551]
Nanotechnology. 2010 Apr 30;21(17):175104 [PMID: 20368680]
J Nanobiotechnology. 2015 Sep 04;13:55 [PMID: 26337542]
Pharmaceutics. 2021 Nov 04;13(11): [PMID: 34834282]
Sci Rep. 2014 Dec 15;4:7490 [PMID: 25502402]
Mol Med Rep. 2017 Dec;16(6):9005-9010 [PMID: 28990103]
Mol Pharm. 2020 Apr 6;17(4):1226-1236 [PMID: 32022567]
Colloids Surf B Biointerfaces. 2019 Apr 1;176:300-308 [PMID: 30640130]
Int J Mol Sci. 2022 Aug 20;23(16): [PMID: 36012670]
Int J Mol Sci. 2022 Dec 08;23(24): [PMID: 36555216]
Cancer Lett. 2011 Dec 8;311(2):131-40 [PMID: 21840122]
Nanomedicine. 2018 Aug;14(6):1919-1929 [PMID: 29885899]
ACS Nano. 2014 Sep 23;8(9):8979-91 [PMID: 25133608]
Life (Basel). 2023 Feb 07;13(2): [PMID: 36836823]
Pharmaceutics. 2021 Apr 17;13(4): [PMID: 33920666]
Jpn J Radiol. 2017 Oct;35(10):555-561 [PMID: 28795273]
Breast Cancer Res Treat. 2013 Jan;137(1):81-91 [PMID: 23160926]

Word Cloud

Similar Articles

Cited By