Transcriptome-wide association studies: recent advances in methods, applications and available databases.

Jialin Mai, Mingming Lu, Qianwen Gao, Jingyao Zeng, Jingfa Xiao
Author Information
  1. Jialin Mai: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
  2. Mingming Lu: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
  3. Qianwen Gao: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
  4. Jingyao Zeng: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China. zengjy@big.ac.cn. ORCID
  5. Jingfa Xiao: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China. xiaojingfa@big.ac.cn. ORCID

Abstract

Genome-wide association study has identified fruitful variants impacting heritable traits. Nevertheless, identifying critical genes underlying those significant variants has been a great task. Transcriptome-wide association study (TWAS) is an instrumental post-analysis to detect significant gene-trait associations focusing on modeling transcription-level regulations, which has made numerous progresses in recent years. Leveraging from expression quantitative loci (eQTL) regulation information, TWAS has advantages in detecting functioning genes regulated by disease-associated variants, thus providing insight into mechanisms of diseases and other phenotypes. Considering its vast potential, this review article comprehensively summarizes TWAS, including the methodology, applications and available resources.

References

Nat Commun. 2018 May 8;9(1):1825 [PMID: 29739930]
Genet Epidemiol. 2020 Jul;44(5):425-441 [PMID: 32190932]
PLoS Genet. 2013;9(2):e1003264 [PMID: 23408905]
Genet Epidemiol. 2021 Apr;45(3):324-337 [PMID: 33369784]
Elife. 2022 Nov 23;11: [PMID: 36416764]
Biomed Pharmacother. 2022 Jul;151:113158 [PMID: 35644116]
Nat Genet. 2018 Apr;50(4):538-548 [PMID: 29632383]
Nat Genet. 2020 Nov;52(11):1239-1246 [PMID: 33020666]
Nat Genet. 2019 Mar;51(3):568-576 [PMID: 30804563]
Cells. 2022 Jun 24;11(13): [PMID: 35805105]
Front Genet. 2020 Dec 10;11:604324 [PMID: 33362862]
Nat Genet. 2016 May;48(5):481-7 [PMID: 27019110]
Genet Epidemiol. 2022 Dec;46(8):572-588 [PMID: 35766062]
Comput Struct Biotechnol J. 2022 May 14;20:2338-2351 [PMID: 35615025]
Nat Genet. 2019 Apr;51(4):675-682 [PMID: 30926970]
Nat Genet. 2016 Mar;48(3):245-52 [PMID: 26854917]
Genome Biol. 2020 Feb 20;21(1):42 [PMID: 32079541]
Nucleic Acids Res. 2022 Jan 7;50(D1):D1123-D1130 [PMID: 34669946]
Int J Cancer. 2020 Apr 1;146(7):1862-1878 [PMID: 31696517]
PLoS Comput Biol. 2015 Apr 17;11(4):e1004219 [PMID: 25885710]
J Crohns Colitis. 2022 Feb 23;16(2):275-285 [PMID: 34286847]
Basic Res Cardiol. 2022 Feb 17;117(1):6 [PMID: 35175464]
Nat Genet. 2023 Feb;55(2):291-300 [PMID: 36702996]
J Am Stat Assoc. 2023;118(543):1525-1537 [PMID: 37808547]
Genes (Basel). 2023 Apr 30;14(5): [PMID: 37239387]
Am J Hum Genet. 2019 Aug 1;105(2):258-266 [PMID: 31230719]
Nat Genet. 2020 Jun;52(6):626-633 [PMID: 32424349]
J Genet. 2015 Jun;94(2):187-92 [PMID: 26174666]
Schizophr Bull. 2021 Oct 21;47(6):1642-1652 [PMID: 33772305]
HGG Adv. 2021 Apr 8;2(2): [PMID: 33937878]
Nat Genet. 2019 Apr;51(4):592-599 [PMID: 30926968]
Hum Mol Genet. 2023 Apr 6;32(8):1237-1251 [PMID: 36179104]
Hum Mol Genet. 2021 May 29;30(10):939-951 [PMID: 33615361]
Nat Commun. 2021 May 17;12(1):2878 [PMID: 34001886]
Hum Genet. 2020 Feb;139(2):199-213 [PMID: 31844974]
Brain Commun. 2021 Apr 19;3(2):fcab083 [PMID: 33959712]
PLoS Genet. 2021 Mar 8;17(3):e1009398 [PMID: 33684137]
Front Genet. 2021 Feb 02;12:616492 [PMID: 33603775]
PLoS Genet. 2019 Jan 22;15(1):e1007889 [PMID: 30668570]
Commun Biol. 2022 Mar 30;5(1):289 [PMID: 35354918]
PLoS Genet. 2021 Feb 25;17(2):e1009363 [PMID: 33630843]
Genetics. 2016 Mar;202(3):919-29 [PMID: 26773050]
Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33200776]
Blood. 2005 Jul 15;106(2):740-5 [PMID: 15790781]
Genes (Basel). 2021 Jul 08;12(7): [PMID: 34356065]
Commun Biol. 2021 Jun 8;4(1):700 [PMID: 34103634]
Nat Genet. 2015 Sep;47(9):1091-8 [PMID: 26258848]
Nat Genet. 2021 Sep;53(9):1300-1310 [PMID: 34475573]
Arthritis Res Ther. 2021 Jan 22;23(1):38 [PMID: 33482886]
Science. 2020 Sep 11;369(6509): [PMID: 32913075]
Curr Hypertens Rep. 2022 Nov;24(11):535-546 [PMID: 35788967]
Nat Commun. 2022 Oct 25;13(1):6336 [PMID: 36284135]
Nucleic Acids Res. 2023 Jan 6;51(D1):D1179-D1187 [PMID: 36243959]
Pac Symp Biocomput. 2018;23:448-459 [PMID: 29218904]
PLoS One. 2019 Aug 8;14(8):e0220827 [PMID: 31393916]

MeSH Term

Genome-Wide Association Study
Transcriptome
Databases, Factual
Fruit
Phenotype

Word Cloud

Similar Articles

Cited By