Structural complexity biases vegetation greenness measures.

Yelu Zeng, Dalei Hao, Taejin Park, Peng Zhu, Alfredo Huete, Ranga Myneni, Yuri Knyazikhin, Jianbo Qi, Ramakrishna R Nemani, Fa Li, Jianxi Huang, Yongyuan Gao, Baoguo Li, Fujiang Ji, Philipp Köhler, Christian Frankenberg, Joseph A Berry, Min Chen
Author Information
  1. Yelu Zeng: College of Land Science and Technology, China Agricultural University, Beijing, China. zengyelu123@gmail.com. ORCID
  2. Dalei Hao: Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA. dalei.hao@pnnl.gov. ORCID
  3. Taejin Park: NASA Ames Research Center, Moffett Field, CA, USA. ORCID
  4. Peng Zhu: Department of Geography and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
  5. Alfredo Huete: Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia. ORCID
  6. Ranga Myneni: Department of Earth and Environment, Boston University, Boston, MA, USA.
  7. Yuri Knyazikhin: Department of Earth and Environment, Boston University, Boston, MA, USA.
  8. Jianbo Qi: Centre d'Etudes Spatiales de la Biosphere, Toulouse, France.
  9. Ramakrishna R Nemani: NASA Ames Research Center, Moffett Field, CA, USA.
  10. Fa Li: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA. ORCID
  11. Jianxi Huang: College of Land Science and Technology, China Agricultural University, Beijing, China. ORCID
  12. Yongyuan Gao: College of Land Science and Technology, China Agricultural University, Beijing, China. ORCID
  13. Baoguo Li: College of Land Science and Technology, China Agricultural University, Beijing, China.
  14. Fujiang Ji: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA.
  15. Philipp Köhler: EUMETSAT, Darmstadt, Germany. ORCID
  16. Christian Frankenberg: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. ORCID
  17. Joseph A Berry: Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA. ORCID
  18. Min Chen: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA. min.chen@wisc.edu. ORCID

Abstract

Vegetation 'greenness' characterized by spectral vegetation indices (VIs) is an integrative measure of vegetation leaf abundance, biochemical properties and pigment composition. Surprisingly, satellite observations reveal that several major VIs over the US Corn Belt are higher than those over the Amazon rainforest, despite the forests having a greater leaf area. This contradicting pattern underscores the pressing need to understand the underlying drivers and their impacts to prevent misinterpretations. Here we show that macroscale shadows cast by complex forest structures result in lower greenness measures compared with those cast by structurally simple and homogeneous crops. The shadow-induced contradictory pattern of VIs is inevitable because most Earth-observing satellites do not view the Earth in the solar direction and thus view shadows due to the sun-sensor geometry. The shadow impacts have important implications for the interpretation of VIs and solar-induced chlorophyll fluorescence as measures of global vegetation changes. For instance, a land-conversion process from forests to crops over the Amazon shows notable increases in VIs despite a decrease in leaf area. Our findings highlight the importance of considering shadow impacts to accurately interpret remotely sensed VIs and solar-induced chlorophyll fluorescence for assessing global vegetation and its changes.

References

Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979). [DOI: 10.1016/0034-4257(79)90013-0]
Myneni, R. B., Keeling, C., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997). [DOI: 10.1038/386698a0]
Zeng, Y. et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 3, 477–493 (2022).
Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020). [DOI: 10.1038/s43017-019-0001-x]
Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019). [PMID: 31534135]
Zhang, H. et al. A novel red-edge spectral index for retrieving the leaf chlorophyll content. Methods Ecol. Evol. 13, 2771–2787 (2022). [DOI: 10.1111/2041-210X.13994]
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002). [DOI: 10.1016/S0034-4257(02)00096-2]
Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244 (2017). [PMID: 28345046]
Kimm, H. et al. Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the US Corn Belt using Planet Labs CubeSat and STAIR fusion data. Remote Sens. Environ. 239, 111615 (2020). [DOI: 10.1016/j.rse.2019.111615]
Maeda, E. E. et al. Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proc. Natl Acad. Sci. USA 118, e2023787118 (2021). [PMID: 33558246]
Bi, J. et al. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ. Res. Lett. 10, 064014 (2015). [DOI: 10.1088/1748-9326/10/6/064014]
Wu, J. et al. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. New Phytol. 217, 1507–1520 (2018). [PMID: 29274288]
Hashimoto, H. et al. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 12, 684 (2021). [PMID: 33514721]
Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 4, 170165 (2017).
Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016). [DOI: 10.1088/1748-9326/11/8/084001]
Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002). [DOI: 10.1016/S0034-4257(02)00091-3]
Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014). [PMID: 24499816]
Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016). [PMID: 26983544]
Zeng, Y. et al. A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sens. Environ. 232, 111209 (2019). [DOI: 10.1016/j.rse.2019.05.028]
Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020). [DOI: 10.1038/s41558-019-0688-1]
Rautiainen, M. & Stenberg, P. Application of photon recollision probability in coniferous canopy reflectance simulations. Remote Sens. Environ. 96, 98–107 (2005). [DOI: 10.1016/j.rse.2005.02.009]
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019). [PMID: 30778399]
Parker, G. G., Fitzjarrald, D. R. & Sampaio, I. C. G. Consequences of environmental heterogeneity for the photosynthetic light environment of a tropical forest. Agric. For. Meteorol. 278, 107661 (2019). [DOI: 10.1016/j.agrformet.2019.107661]
Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021). [PMID: 33637524]
Yin, G., Verger, A., Descals, A., Filella, I. & Peñuelas, J. A broadband green–red vegetation index for monitoring gross primary production phenology. J. Remote Sens. 2022, 9764982 (2022). [DOI: 10.34133/2022/9764982]
Breon, F.-M. & Maignan, F. A BRDF–BPDF database for the analysis of Earth target reflectances. Earth Syst. Sci. Data 9, 31–45 (2017). [DOI: 10.5194/essd-9-31-2017]
Diner, D. J. et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998). [DOI: 10.1109/36.700992]
Kaufmann, R. K. et al. Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data. IEEE Trans. Geosci. Remote Sens. 38, 2584–2597 (2000). [DOI: 10.1109/36.885205]
Qi, J. et al. LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sens. Environ. 221, 695–706 (2019). [DOI: 10.1016/j.rse.2018.11.036]
Dos-Santos, M., Keller, M. & Morton, D. LiDAR Surveys Over Selected Forest Research Sites, Brazilian Amazon, 2008–2018 (ORNL DAAC, 2019); https://doi.org/10.3334/ORNLDAAC/1644
Köhler, P., Guanter, L., Kobayashi, H., Walther, S. & Yang, W. Assessing the potential of sun-induced fluorescence and the canopy scattering coefficient to track large-scale vegetation dynamics in Amazon forests. Remote Sens. Environ. 204, 769–785 (2018). [DOI: 10.1016/j.rse.2017.09.025]
Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021). [PMID: 33674308]
Abera, T. A., Heiskanen, J., Pellikka, P., Rautiainen, M. & Maeda, E. E. Clarifying the role of radiative mechanisms in the spatio-temporal changes of land surface temperature across the Horn of Africa. Remote Sens. Environ. 221, 210–224 (2019). [DOI: 10.1016/j.rse.2018.11.024]
Zheng, L. et al. Spatial, temporal, and spectral variations in albedo due to vegetation changes in China’s grasslands. ISPRS J. Photogramm. Remote Sens. 152, 1–12 (2019). [DOI: 10.1016/j.isprsjprs.2019.03.020]
Alibakhshi, S., Naimi, B., Hovi, A., Crowther, T. W. & Rautiainen, M. Quantitative analysis of the links between forest structure and land surface albedo on a global scale. Remote Sens. Environ. 246, 111854 (2020). [DOI: 10.1016/j.rse.2020.111854]
Yan, H. et al. Forest greening increases land surface albedo during the main growing period between 2002 and 2019 in China. J. Geophys. Res. Atmos. 126, e2020JD033582 (2021). [DOI: 10.1029/2020JD033582]
Ollinger, S. V. et al. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proc. Natl Acad. Sci. USA 105, 19336–19341 (2008). [PMID: 19052233]
Zhang, Y. et al. Spatio-temporal convergence of maximum daily light-use efficiency based on radiation absorption by canopy chlorophyll. Geophys. Res. Lett. 45, 3508–3519 (2018). [DOI: 10.1029/2017GL076354]
Lin, S. et al. Multi-site assessment of the potential of fine resolution red-edge vegetation indices for estimating gross primary production. Int. J. Appl. Earth Obs. Geoinf. 113, 102978 (2022).
Xiao, X. et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89, 519–534 (2004). [DOI: 10.1016/j.rse.2003.11.008]
Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018). [DOI: 10.3390/rs10091346]
Badgley, G., Anderegg, L. D., Berry, J. A. & Field, C. B. Terrestrial gross primary production: using NIRV to scale from site to globe. Glob. Change Biol. 25, 3731–3740 (2019). [DOI: 10.1111/gcb.14729]
Neale, C. M., Gonzalez-Dugo, M. P., Serrano-Perez, A., Campos, I. & Mateos, L. Cotton canopy reflectance under variable solar zenith angles: implications of use in evapotranspiration models. Hydrol. Process. 35, e14162 (2021). [DOI: 10.1002/hyp.14162]
Yebra, M., Van Dijk, A., Leuning, R., Huete, A. & Guerschman, J. P. Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sens. Environ. 129, 250–261 (2013). [DOI: 10.1016/j.rse.2012.11.004]
Chen, J. M. & Liu, J. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens. Environ. 237, 111594 (2020). [DOI: 10.1016/j.rse.2019.111594]
Chen, M. & Zhuang, Q. Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010. Tellus B 66, 21808 (2014). [DOI: 10.3402/tellusb.v66.21808]
Marshak, A. et al. Earth observations from DSCOVR/EPIC instrument. Bull. Am. Meteorol. Soc. 99, 1829–1850 (2018). [PMID: 30393385]
Myneni, R. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002). [DOI: 10.1016/S0034-4257(02)00074-3]
Friedl, M. A. et al. Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 83, 287–302 (2002). [DOI: 10.1016/S0034-4257(02)00078-0]
Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017). [DOI: 10.1016/j.rse.2017.06.031]
Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys. Res. Lett. 45, 10,456–10,463 (2018). [DOI: 10.1029/2018GL079031]
Hao, D. et al. Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations. Remote Sens. Environ. 232, 111320 (2019). [DOI: 10.1016/j.rse.2019.111320]
Hao, D. et al. DSCOVR/EPIC-derived global hourly and daily downward shortwave and photosynthetically active radiation data at 0.1°× 0.1° resolution. Earth Syst. Sci. Data 12, 2209–2221 (2020). [DOI: 10.5194/essd-12-2209-2020]
Ni, X. et al. Vegetation angular signatures of equatorial forests from DSCOVR EPIC and Terra MISR observations. Front. Remote Sens. 2, 766805 (2021).
Aneece, I. P. et al. in Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation (eds Thenkabail P. S. et al.) 251–272 (CRC Press, 2018).
Zeng, Y. The data for the NEE paper: structural complexity biases vegetation greenness measures. figshare https://doi.org/10.6084/m9.figshare.23677407.v1 (2023).
Zeng, Y. The code for the NEE paper: structural complexity biases vegetation greenness measures. figshare https://doi.org/10.6084/m9.figshare.23677260.v1 (2023).
Seyednasrollah, B. et al. Tracking vegetation phenology across diverse biomes using Version 2.0 of the PhenoCam Dataset. Sci. Data https://doi.org/10.1038/s41597-019-0229-9 (2019). [DOI: 10.1038/s41597-019-0229-9]

MeSH Term

Seasons
Forests
Rainforest
Bias
Chlorophyll

Chemicals

Chlorophyll