Aromatic nitrogen scanning by -selective nitrene internalization.

Tyler J Pearson, Ryoma Shimazumi, Julia L Driscoll, Balu D Dherange, Dong-Il Park, Mark D Levin
Author Information
  1. Tyler J Pearson: Department of Chemistry, University of Chicago, Chicago, IL 60637, USA. ORCID
  2. Ryoma Shimazumi: Department of Chemistry, University of Chicago, Chicago, IL 60637, USA. ORCID
  3. Julia L Driscoll: Department of Chemistry, University of Chicago, Chicago, IL 60637, USA. ORCID
  4. Balu D Dherange: Department of Chemistry, University of Chicago, Chicago, IL 60637, USA. ORCID
  5. Dong-Il Park: Department of Chemistry, University of Chicago, Chicago, IL 60637, USA. ORCID
  6. Mark D Levin: Department of Chemistry, University of Chicago, Chicago, IL 60637, USA. ORCID

Abstract

Nitrogen scanning in aryl fragments is a valuable aspect of the drug discovery process, but current strategies require time-intensive, parallel, bottom-up synthesis of each pyridyl isomer because of a lack of direct carbon-to-nitrogen (C-to-N) replacement reactions. We report a site-directable aryl C-to-N replacement reaction allowing unified access to various pyridine isomers through a nitrene-internalization process. In a two-step, one-pot procedure, aryl azides are first photochemically converted to 3-azepines, which then undergo an oxidatively triggered C2-selective cheletropic carbon extrusion through a spirocyclic azanorcaradiene intermediate to afford the pyridine products. Because the carbon of the aryl nitrene is excised from the molecule, the reaction proceeds regioselectively without perturbation of the remainder of the substrate. Applications are demonstrated in the abbreviated synthesis of a pyridyl derivative of estrone, as well as in a prototypical nitrogen scan.

References

Science. 2021 Apr 9;372(6538):175-182 [PMID: 33833121]
Science. 2022 Apr 29;376(6592):527-532 [PMID: 35482853]
J Am Chem Soc. 2022 Oct 5;144(39):17797-17802 [PMID: 36135802]
J Org Chem. 2005 Apr 29;70(9):3425-36 [PMID: 15844975]
J Med Chem. 2017 May 11;60(9):3552-3579 [PMID: 28177632]
J Med Chem. 2017 Feb 23;60(4):1238-1246 [PMID: 28001064]
Acc Chem Res. 2000 Nov;33(11):765-71 [PMID: 11087313]
J Am Chem Soc. 2017 Oct 18;139(41):14807-14814 [PMID: 28945370]
Chem Rev. 2006 Sep;106(9):3844-67 [PMID: 16967923]
Nat Synth. 2022 May;1(5):352-364 [PMID: 35935106]
J Med Chem. 2020 Jan 9;63(1):52-65 [PMID: 31820981]
J Am Chem Soc. 2007 Oct 24;129(42):12640-1 [PMID: 17902671]
J Am Chem Soc. 2023 Jan 11;145(1):41-46 [PMID: 36562776]
J Med Chem. 2011 Apr 28;54(8):2529-91 [PMID: 21413808]
J Med Chem. 2012 Jul 12;55(13):6002-20 [PMID: 22533875]
J Med Chem. 2018 Aug 9;61(15):6869-6891 [PMID: 29995405]
Nat Commun. 2022 Jan 20;13(1):425 [PMID: 35058468]
J Am Chem Soc. 2003 Aug 6;125(31):9343-58 [PMID: 12889963]
Nat Chem. 2018 Apr;10(4):383-394 [PMID: 29568051]
Org Lett. 2021 Aug 6;23(15):6126-6130 [PMID: 34314185]

Grants

  1. R35 GM142768/NIGMS NIH HHS

Word Cloud

Similar Articles

Cited By