Material and mix design aspects of hot recycled asphalt mixes: A review.

A Nirmal Prasad, Nikhil Saboo, Agnivesh Pani
Author Information
  1. A Nirmal Prasad: Department of Civil Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India.
  2. Nikhil Saboo: Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India. nikhil.saboo@ce.iitr.ac.in.
  3. Agnivesh Pani: Department of Civil Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India.

Abstract

Sustainability in road construction can be achieved by integrating recycled materials in the production of new pavement. One such approach is using reclaimed asphalt pavement materials (RAPM) in hot mix asphalt (HMA). Successful implementation of RAPM in HMA can only be achieved by having good comprehension of the essential material characterisation and design process. The main objective of this review is to summarise the literature and provide a keen understanding of the characterisation of materials involved (RAPM and rejuvenators) and mix design, by giving due consideration to the interaction of virgin and recycled materials. Widely used techniques for extraction and recovery of reclaimed asphalt pavement (RAP) binder have been reviewed. The advantages and disadvantages of different characterisation techniques are identified. The effect of various factors on the volumetrics of the recycled mixes is presented. Insight in to the requirements of a rejuvenator by taking into account the changes in binder after ageing is provided. Aspects that need further exploration to normalise and increase the confidence of RAPM in HMA are also highlighted as the future recommendations.

Keywords

References

  1. Abd DM, Ph D, Al-khalid H et al (2018) Novel methodology to investigate and obtain a complete blend between RAP and virgin materials. 30:1–12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002230
  2. AbuHassan Y, Alin M, Iqbal T et al (2019) Effect of extraction solvents on rheological properties of recovered asphalt binders. J Stomatol 145:1–10. https://doi.org/10.1061/JPEODX.0000096 [DOI: 10.1061/JPEODX.0000096]
  3. Al-Qadi IL, Carpenter SH, Roberts G et al (2009) Determination of usable residual Asphalt Binder in RAP (No. FHWA-ICT-09-031) Illinois Center for Transportation
  4. Al-Qadi IL, Qazi A, Carpenter SH (2012) Impact of high RAP content on structural and performance properties of asphalt mixtures. Res Rep FHWA-ICT-12–002 1–107
  5. Allen RG, Little DN, Bhasin A (2012) Structural characterization of micromechanical properties in asphalt using atomic force microscopy. J Mater Civ Eng 24:1317–1327. https://doi.org/10.1061/(asce)mt.1943-5533.0000510 [DOI: 10.1061/(asce)mt.1943-5533.0000510]
  6. Anderson DI, Peterson DE, Wiley ML, Betenson WB (1978) Evaluation of selected sodtening agents used in flexible pavement design. Rep TS-79-204 79:60
  7. Asli H, Ahmadinia E, Zargar M, Karim MR (2012) Investigation on physical properties of waste cooking oil - rejuvenated bitumen binder. Constr Build Mater 37:398–405. https://doi.org/10.1016/j.conbuildmat.2012.07.042 [DOI: 10.1016/j.conbuildmat.2012.07.042]
  8. Asphalt Institute (2014) MS-2 asphalt mix design methods, 7th edn. Asphalt Institute, USA
  9. ASTM D4552 (2001) Standard practice for classifying emulsified recycling agents 1. Annu B Am Soc Test Mater Stand 97:1–2. https://doi.org/10.1520/D4552-92R04
  10. ASTM D1856 (2009) Standard test method for recovery of asphalt from solution by Abson method 1. Annu B Am Soc Test Mater Stand 09:1–5. https://doi.org/10.1520/D1856-09R15.2 [DOI: 10.1520/D1856-09R15.2]
  11. ASTM D2172–17 (2017) Standard test methods for quantitative extraction of asphalt binder from asphalt mixtures. Am Soc Test Mater 1–10. https://doi.org/10.1520/D2172
  12. ASTM D5404 (2017) Standard practice for recovery of asphalt from solution using the rotary evaporator 1. https://doi.org/10.1520/D5404_D5404M-12R17
  13. ASTM D7906 (2014) Standard practice for recovery of asphalt from solution using toluene and the rotary evaporator. ASTM Int West Conshohocken PA 12:6–8. https://doi.org/10.1520/D7906-14.2 [DOI: 10.1520/D7906-14.2]
  14. ASTM I (2011) Solubility of asphalt materials in trichloroethylene 1. ASTM Int 9–11. https://doi.org/10.1520/D2042-15.2
  15. ASTMD6307–16 (2016) Standard test method for asphalt content of asphalt mixture by ignition method. Am Soc Test Mater 1–5. https://doi.org/10.1520/D6307-19.2
  16. Baghaee Moghaddam T, Baaj H (2016) The use of rejuvenating agents in production of recycled hot mix asphalt: a systematic review. Constr Build Mater 114:805–816. https://doi.org/10.1016/j.conbuildmat.2016.04.015 [DOI: 10.1016/j.conbuildmat.2016.04.015]
  17. Barros L, Garcia VM, Garibay J et al (2019) Implications of including reclaimed asphalt pavement materials to performance of balanced asphalt concrete mixes. Transp Res Rec J Transp Res Board 2673:670–678. https://doi.org/10.1177/0361198119875666 [DOI: 10.1177/0361198119875666]
  18. Behnood A (2019) Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: a review. J Clean Prod 231:171–182. https://doi.org/10.1016/j.jclepro.2019.05.209 [DOI: 10.1016/j.jclepro.2019.05.209]
  19. Bharath G, Reddy KS, Tandon V, Reddy MA (2021) Aggregate gradation effect on the fatigue performance of recycled asphalt mixtures. Road Mater Pavement Des 22:165–184. https://doi.org/10.1080/14680629.2019.1620116 [DOI: 10.1080/14680629.2019.1620116]
  20. Bocci E, Prosperi E (2020) Analysis of different reclaimed asphalt pavements to assess the potentiality of RILEM cohesion test. Mater Struct Constr 53:1–14. https://doi.org/10.1617/s11527-020-01551-3 [DOI: 10.1617/s11527-020-01551-3]
  21. Booshehrian A, Mogawer WS, Bonaquist R (2013) How to construct an asphalt binder master curve and assess the degree of blending between RAP and virgin binders. J Mater Civ Eng 25:1813–1821. https://doi.org/10.1061/(asce)mt.1943-5533.0000726 [DOI: 10.1061/(asce)mt.1943-5533.0000726]
  22. Bowers BF, Huang B, Shu X, Miller BC (2014a) Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR. Constr Build Mater 50:517–523. https://doi.org/10.1016/j.conbuildmat.2013.10.003 [DOI: 10.1016/j.conbuildmat.2013.10.003]
  23. Bowers BF, Moore J, Huang B, Shu X (2014b) Blending efficiency of reclaimed asphalt pavement: an approach utilizing rheological properties and molecular weight distributions. Fuel 135:63–68. https://doi.org/10.1016/j.fuel.2014.05.059 [DOI: 10.1016/j.fuel.2014.05.059]
  24. Boyer R (2000) Asphalt Rejuvenators “Fact, or Fable.” Transp. Syst. 58:1
  25. Bressi S, Dumont AG, Pittet M (2015) Cluster phenomenon and partial differential aging in RAP mixtures. Constr Build Mater 99:288–297. https://doi.org/10.1016/j.conbuildmat.2015.09.024 [DOI: 10.1016/j.conbuildmat.2015.09.024]
  26. Brown ER, Mager S (1995) Aspahlt content by ignition round robin study
  27. Brown ER, Murphy NE, Yu L, Mager S (1996) Historical development of asphalt content determination by the ignition method. Asph Paving Technol Assoc Asph Paving Technol Tech Sess 64:241–277
  28. Brownridge J (2010) The role of an asphalt rejuvenator in pavement preservation : use and need for asphalt rejuvenation. In: Compendium of papers from the first international conference on pavement preservation. USA: Newport Beach CA, pp 351–364
  29. Bukowski J R (1997) Guidelines for the design of mixtures containing reclaimed asphalt pavemenT. In: Memorandum, ETG Meeting, FHWA Superpave Mixtures Expert Task Group, San Antonio, TX. pp 1–24
  30. Bullin JA, Davison RR, Glover CJ, Chaffin J, Liu M, Madrid R (1995) Development of superior asphalt recycling agents. USA, University of Texas A&M and Department of Chemical Engineering, Texas Transportation Institute
  31. Burr BL, Davison RR, Jemison HB, et al (1991) Asphalt Hardening in Extraction Solvents. Transp Res Rec 1323:70–76
  32. Burr BL, Davison RR, Glover CJ, Bullin JA (1990) Solvent removal from asphalt. Transp Res Rec 1269:1–8
  33. Burr BL, Glover CJ, Davison RR, Bullin JA (1993) New apparatus and procedure for the extraction and recovery of asphalt binder from pavement mixtures. Transp Res Rec 1269:20–29
  34. Carey DE, Paul HR (1982) Evaluation of asphalt cement extraction and recovery methods (No. Research Report No. 157). Louisiana. Department of Highways. Research and Development Section
  35. Carolina S (2016) Estimation of low temperature properties of RAP Binder without Extraction
  36. Carpenter SH, Wolosick JR (1980) Modifier influence in the characterization of hot-mix recycled material. Transp Res Rec 777:15–22
  37. Cavalli MC, Griffa M, Bressi S et al (2016) Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components. J Microsc 264:22–33. https://doi.org/10.1111/jmi.12412 [DOI: 10.1111/jmi.12412]
  38. Cavalli MC, Partl MN, Poulikakos LD (2017) Measuring the binder film residues on black rock in mixtures with high amounts of reclaimed asphalt. J Clean Prod 149:665–672. https://doi.org/10.1016/j.jclepro.2017.02.055 [DOI: 10.1016/j.jclepro.2017.02.055]
  39. Chaffin JM, Liu M, Davison RR et al (1997) Supercritical fractions as asphalt recycling agents and preliminary aging studies on recycled asphalts. Ind Eng Chem Res 36:656–666. https://doi.org/10.1021/ie9604435 [DOI: 10.1021/ie9604435]
  40. Chen JS, Huang CC, Chu PY, Lin KY (2007) Engineering characterization of recycled asphalt concrete and aged bitumen mixed recycling agent. J Mater Sci 42:9867–9876. https://doi.org/10.1007/s10853-007-1713-8 [DOI: 10.1007/s10853-007-1713-8]
  41. Cipione CA, Davison RR, Burr BL et al (1991) Evaluation of solvents for extraction of residual asphalt from aggregates. Transp Res Rec 1323:47–52
  42. Colbert B, You Z (2012) The determination of mechanical performance of laboratory produced hot mix asphalt mixtures using controlled RAP and virgin aggregate size fractions. Constr Build Mater 26:655–662. https://doi.org/10.1016/j.conbuildmat.2011.06.068 [DOI: 10.1016/j.conbuildmat.2011.06.068]
  43. Collins-Garcia H, Tia M, Roque R, Choubane B (2000) Alternative solvent for reducing health and environmental hazards in extracting asphalt: an evaluation. Transp Res Rec 79–85. https://doi.org/10.3141/1712-10
  44. Cong P, Hao H, Zhang Y et al (2016) Investigation of diffusion of rejuvenator in aged asphalt. Int J Pavement Res Technol 9:280–288. https://doi.org/10.1016/j.ijprt.2016.08.001 [DOI: 10.1016/j.ijprt.2016.08.001]
  45. Cooley LA, Williams K (2013) Development of laboratory mix design procedures for rap mixes. Missisipi Dep Transp No: FHWA/MS-DOT-RD-13-246
  46. Copeland A (2011) Reclaimed asphalt pavement in asphalt mixtures: state of the practice (No. FHWA-HRT-11-021)
  47. Davidson DD, Canessa W, Escobar SJ (1978) Practical aspects of reconstituting deteriorated bituminous pavements. ASTM Spec Tech Publ 16–34. https://doi.org/10.1520/stp35773s
  48. Devulapalli L, Kothandaraman S, Sarang G (2020) Effect of rejuvenating agents on stone matrix asphalt mixtures incorporating RAP. Constr Build Mater 254:119298. https://doi.org/10.1016/j.conbuildmat.2020.119298 [DOI: 10.1016/j.conbuildmat.2020.119298]
  49. Diefenderfer SD (2014) Developing a Laboratory Protocol for Asphalt Binder Recovery (No. FHWA/VCTIR 15-R7) Virginia Center for Transportation Innovation and Research
  50. Ding Y, Cao X, Gong H et al (2020) Evaluating recycling efficiency of plant-asphalt mixtures containing RAP/RAS. J Mater Civ Eng 32:04020316. https://doi.org/10.1061/(asce)mt.1943-5533.0003373 [DOI: 10.1061/(asce)mt.1943-5533.0003373]
  51. Ding Y, Huang B, Shu X (2016a) Characterizing blending efficiency of plant produced asphalt paving mixtures containing high RAP. Constr Build Mater 126:172–178. https://doi.org/10.1016/j.conbuildmat.2016.09.025 [DOI: 10.1016/j.conbuildmat.2016.09.025]
  52. Ding Y, Huang B, Shu X (2018) Blending efficiency evaluation of plant asphalt mixtures using fluorescence microscopy. Constr Build Mater 161:461–467. https://doi.org/10.1016/j.conbuildmat.2017.11.138 [DOI: 10.1016/j.conbuildmat.2017.11.138]
  53. Ding Y, Huang B, Shu X et al (2016b) Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders. Fuel 174:267–273. https://doi.org/10.1016/j.fuel.2016.02.022 [DOI: 10.1016/j.fuel.2016.02.022]
  54. Dony A, Colin J, Bruneau D et al (2013) Reclaimed asphalt concretes with high recycling rates: changes in reclaimed binder properties according to rejuvenating agent. Constr Build Mater 41:175–181. https://doi.org/10.1016/j.conbuildmat.2012.11.031 [DOI: 10.1016/j.conbuildmat.2012.11.031]
  55. Doyle JD, Howard IL, Robinson WJ (2012) Prediction of absorbed, inert, and effective bituminous quantities in reclaimed asphalt pavement. J Mater Civ Eng 24:102–112. https://doi.org/10.1061/(asce)mt.1943-5533.0000356 [DOI: 10.1061/(asce)mt.1943-5533.0000356]
  56. Dunning RL, Mendenhall RL (1978) Design of recycled asphalt pavements and selection of modifiers. ASTM Spec Tech Publ 35–46. https://doi.org/10.1520/stp35774s
  57. Eddhahak-Ouni A, Dony A, Colin J et al (2012) Experimental investigation of the homogeneity of the blended binder of a high rate recycled asphalt. Road Mater Pavement Des 13:566–575. https://doi.org/10.1080/14680629.2012.700269 [DOI: 10.1080/14680629.2012.700269]
  58. Eilers H (1949) The colloidal structure of asphalt. J Phys Colloid Chem 53:1195–1211. https://doi.org/10.1021/j150473a006 [DOI: 10.1021/j150473a006]
  59. Enustun BV, Kim SS, Lee DY (1990) Correlation of locally-based performance of asphalts with their physicochemical parameters. IOWA DoT Proj 1–168
  60. Epps JA (1978) Recycling materials for highways
  61. Epps J, Terrel R, Little D, Holmgreen R (1980a) Guidelines for recycling asphalt pavements. In: Assoc Asphalt Paving Technol pp 5–24
  62. Epps JA, Little DN, Holmgreen RJ, Terrel RL (1980b) Guidelines for recycling pavement materials
  63. Epps JA, Little DN, BMG (1981) Recycling: Project selection and design. In: International road federation symposium
  64. Escobar SJ (1991) Recycling of deteriorated pavements: a review of current guidelines and future outlook with respect to polymer modified recycling agents. In: APA International Asphalt Conference, sydney, Australia
  65. Farrar MJ, Grimes RW, Wiseman S (2015a) Asphalt pavement-Micro-sampling and micro-extraction methods. Fundamental Properties of Asphalts and Modified Asphalt III. Quarterly Technical Report
  66. Farrar MJ, Grimes RW, Wiseman S, Planche J-P (2015b) TechBrief: Asphalt pavement-Micro-sampling and micro-extraction methods
  67. Filonzi A, Lee SK, Ferreira W et al (2020) A micro-extraction method for use with 4 mm plate geometry in the dynamic shear rheometer to evaluate asphalt binder rheology. Constr Build Mater 252:119024. https://doi.org/10.1016/j.conbuildmat.2020.119024 [DOI: 10.1016/j.conbuildmat.2020.119024]
  68. Fu Yen T (1992) The colloidal aspect of a macrostructure of petroleum asphalt. Fuel Sci Technol Int 10:723–733. https://doi.org/10.1080/08843759208916018 [DOI: 10.1080/08843759208916018]
  69. Garcia-Hernández A, Salih S, Ruiz-Riancho I et al (2020) Self-healing of reflective cracks in asphalt mixtures by the action of encapsulated agents. Constr Build Mater 252:118929. https://doi.org/10.1016/j.conbuildmat.2020.118929 [DOI: 10.1016/j.conbuildmat.2020.118929]
  70. García Á, Schlangen E, Van De Ven M (2011) Properties of capsules containing rejuvenators for their use in asphalt concrete. Fuel 90:583–591. https://doi.org/10.1016/j.fuel.2010.09.033 [DOI: 10.1016/j.fuel.2010.09.033]
  71. Garcia Cucalon L, King G, Kaseer F et al (2017) Compatibility of recycled binder blends with recycling agents: rheological and physicochemical evaluation of rejuvenation and aging processes. Ind Eng Chem Res 56:8375–8384. https://doi.org/10.1021/acs.iecr.7b01657 [DOI: 10.1021/acs.iecr.7b01657]
  72. Gottumukkala B, Kusam SR, Tandon V, Muppireddy AR (2018) Estimation of blending of RAP binder in a recycled asphalt pavement mix. J Mater Civ Eng 30:04018181. https://doi.org/10.1061/(asce)mt.1943-5533.0002403 [DOI: 10.1061/(asce)mt.1943-5533.0002403]
  73. Grover Allen R, Little DN, Bhasin A, Glover CJ (2014) The effects of chemical composition on asphalt microstructure and their association to pavement performance. Int J Pavement Eng 15:9–22 [DOI: 10.1080/10298436.2013.836192]
  74. Grunberg L, Nissan AH (1949) Mixture law for viscosity. Nature 164:799–800. https://doi.org/10.1038/164799b0 [DOI: 10.1038/164799b0]
  75. Guduru G, Tavva TL, Kuna K (2020) Estimation of reclaimed asphalt pavement (RAP) characteristics using simple indicative tests. Road Mater Pavement Des 0:1–27. https://doi.org/10.1080/14680629.2020.1845785
  76. Gunkel K (1994) Hot mix asphalt mixing facilities. AP-42. Compil Air Pollut Emiss Factors I:22–24
  77. Hall KD, Williams SG (1999) Effects of the ignition method on aggregate properties. Proc Assoc Asph Paving Technol 68:574–588
  78. Han S, Cheng X, Liu Y, Zhang Y (2019) Laboratory performance of hot mix asphalt with high reclaimed asphalt pavement (RAP) and fine reclaimed asphalt pavement (FRAP) content. Materials (Basel) 12. https://doi.org/10.3390/ma12162536
  79. Harle OLKHA (1975) The effect of asphaltenes on asphalt viscosity. Solutions 14:240–246
  80. Hettiarachchi C, Hou X, Xiang Q et al (2020) A blending efficiency model for virgin and aged binders in recycled asphalt mixtures based on blending temperature and duration. Resour Conserv Recycl 161:104957. https://doi.org/10.1016/j.resconrec.2020.104957 [DOI: 10.1016/j.resconrec.2020.104957]
  81. Holmgreen RJ, Epps JONA (1978) Evaluation of selected recycling modifiers. Transp Res Rec 777:22–25
  82. Huang B, Li G, Vukosavljevic D et al (2005) Laboratory investigation of mixing hot-mix asphalt with reclaimed asphalt pavement. Transp Res Rec 37–45. https://doi.org/10.3141/1929-05
  83. Izaks R, Haritonovs V, Klasa I, Zaumanis M (2015) Hot mix asphalt with high RAP content. Procedia Eng 114:676–684. https://doi.org/10.1016/j.proeng.2015.08.009 [DOI: 10.1016/j.proeng.2015.08.009]
  84. Izaks R, Rathore M, Haritonovs V, Zaumanis M (2020) Performance properties of high modulus asphalt concrete containing high reclaimed asphalt content and polymer modified binder. Int J Pavement Eng 0:1–10. https://doi.org/10.1080/10298436.2020.1850721
  85. Jiang Y, Gu X, Zhou Z et al (2018) Laboratory observation and evaluation of asphalt blends of reclaimed asphalt pavement binder with virgin binder using SEM/EDS. Transp Res Rec 2672:69–78. https://doi.org/10.1177/0361198118782023 [DOI: 10.1177/0361198118782023]
  86. Kandhal PS, Mallick RB (1998) Pavement recycling guidelines for state and local governments: participant’s reference book
  87. Karlsson R, Isacsson U (2003a) Laboratory studies of diffusion in bitumen using markers. J Mater Sci 38:2835–2844. https://doi.org/10.1023/A:1024476217060 [DOI: 10.1023/A]
  88. Karlsson R, Isacsson U (2006) Material-related aspects of asphalt recycling—state-of-the-art. J Mater Civ Eng 18:81–92. https://doi.org/10.1061/(asce)0899-1561(2006)18:1(81) [DOI: 10.1061/(asce)0899-1561(2006)18]
  89. Karlsson R, Isacsson U (2003b) Application of FTIR-ATR to characterization of bitumen rejuvenator diffusion. J Mater Civ Eng 15:157–165. https://doi.org/10.1061/(asce)0899-1561(2003)15:2(157) [DOI: 10.1061/(asce)0899-1561(2003)15]
  90. Karlsson R, Isacsson U (2002) Bitumen rejuvenator diffusion as influenced by ageing. Road Mater Pavement Des 3:167–182. https://doi.org/10.1080/14680629.2002.9689920 [DOI: 10.1080/14680629.2002.9689920]
  91. Karlsson R, Isacsson U, Ekblad J (2007) Rheological characterisation of bitumen diffusion. J Mater Sci 42:101–108. https://doi.org/10.1007/s10853-006-1047-y [DOI: 10.1007/s10853-006-1047-y]
  92. Kaseer F, Arámbula-Mercado E, Martin AE (2019a) A method to quantify reclaimed asphalt pavement binder availability (effective RAP binder) in recycled asphalt mixes. Transp Res Rec 2673:205–216. https://doi.org/10.1177/0361198118821366 [DOI: 10.1177/0361198118821366]
  93. Kaseer F, Martin AE, Arámbula-Mercado E (2019b) Use of recycling agents in asphalt mixtures with high recycled materials contents in the United States: a literature review. Constr Build Mater 211:974–987. https://doi.org/10.1016/j.conbuildmat.2019.03.286 [DOI: 10.1016/j.conbuildmat.2019.03.286]
  94. Kodippily S, Holleran G, Henning TFP (2017) Deformation and cracking performance of recycled asphalt paving mixes containing polymer-modified binder. Road Mater Pavement Des 18:425–439. https://doi.org/10.1080/14680629.2016.1181559 [DOI: 10.1080/14680629.2016.1181559]
  95. Koots JA, Speight JG (1975) Relation of petroleum resins to asphaltenes. Fuel 54:179–184. https://doi.org/10.1016/0016-2361(75)90007-1 [DOI: 10.1016/0016-2361(75)90007-1]
  96. Kowalski KJ, McDaniel RS, Olek J, Shah A (2011) Modified ignition oven test procedure for determination of binder content in hot mix asphalt containing dolomite aggregate. J Test Eval 39:1060–1069. https://doi.org/10.1520/JTE103312 [DOI: 10.1520/JTE103312]
  97. Krishna Swamy A, Mitchell LF, Hall SJ, Sias Daniel J (2011) Impact of RAP on the volumetric, stiffness, strength, and low-temperature properties of HMA. J Mater Civ Eng 23:1490–1497. https://doi.org/10.1061/(asce)mt.1943-5533.0000245 [DOI: 10.1061/(asce)mt.1943-5533.0000245]
  98. Kriz P, Grant D, Gale M et al (2014a) Reclaimed asphalt pavement-virgin binder diffusion in asphalt mixes. Can Tech Asph Assoc 375–400
  99. Kriz P, Grant DL, Veloza BA et al (2014b) Blending and diffusion of reclaimed asphalt pavement and virgin asphalt binders. Asph Paving Technol Assoc Asph Paving Technol Tech Sess 83:225–270. https://doi.org/10.1080/14680629.2014.927411
  100. Kuang D, Feng Z, Yu J et al (2011) A new approach for evaluating rejuvenator diffusing into aged bitumen. J Wuhan Univ Technol Mater Sci Ed 26:43–46. https://doi.org/10.1007/s11595-011-0164-x [DOI: 10.1007/s11595-011-0164-x]
  101. Kvasnak A, West R, Michael J et al (2010) Bulk specific gravity of reclaimed asphalt pavement aggregate: evaluating the effect on voids in mineral aggregate. Transp Res Rec 30–35. https://doi.org/10.3141/2180-04
  102. Lee TC, Terrel RL, Mahoney JP (1983) Test for efficiency of mixing of recycled asphalt paving mixtures. Transp Res Rec 911:51–60
  103. Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145:42–82. https://doi.org/10.1016/j.cis.2008.08.011 [DOI: 10.1016/j.cis.2008.08.011]
  104. Lin PS, Wu TL, Chang CW, Chou BY (2011) Effects of recycling agents on aged asphalt binders and reclaimed asphalt concrete. Mater Struct Constr 44:911–921. https://doi.org/10.1617/s11527-010-9675-8 [DOI: 10.1617/s11527-010-9675-8]
  105. Liphardt A, Radziszewski P, Król J (2015) Binder blending estimation method in hot mix asphalt with reclaimed asphalt. Procedia Eng 111:502–509. https://doi.org/10.1016/j.proeng.2015.07.123 [DOI: 10.1016/j.proeng.2015.07.123]
  106. Lo Presti D, Vasconcelos K, Orešković M et al (2020) On the degree of binder activity of reclaimed asphalt and degree of blending with recycling agents. Road Mater Pavement Des 21:2071–2090. https://doi.org/10.1080/14680629.2019.1607537
  107. Loeber L, Muller G, Morel J, Sutton O (1998) Bitumen in colloid science: a chemical, structural and rheological approach. Fuel 77:1443–1450. https://doi.org/10.1016/S0016-2361(98)00054-4 [DOI: 10.1016/S0016-2361(98)00054-4]
  108. Lowell J. Zearly (1979) Penetration characteristics of asphalt in a recycled mixture
  109. Lu X, Isacsson U (2002) Effect of ageing on bitumen chemistry and rheology. Constr Build Mater 16:15–22. https://doi.org/10.1016/S0950-0618(01)00033-2 [DOI: 10.1016/S0950-0618(01)00033-2]
  110. Ma T, Huang X, Zhao Y et al (2016) Influences of preheating temperature of RAP on properties of hot-mix recycled asphalt mixture. J Test Eval 44:762–769. https://doi.org/10.1520/JTE20150157 [DOI: 10.1520/JTE20150157]
  111. Ma T, Huang X, Zhao Y, Zhang Y (2015) Evaluation of the diffusion and distribution of the rejuvenator for hot asphalt recycling. Constr Build Mater 98:530–536. https://doi.org/10.1016/j.conbuildmat.2015.08.135 [DOI: 10.1016/j.conbuildmat.2015.08.135]
  112. Ma T, Mahmoud E, Bahia HU (2010) Estimation of reclaimed asphalt pavement binder low-temperature properties without extraction: development of testing procedure. Transp Res Rec 58–65. https://doi.org/10.3141/2179-07
  113. Mallick RB, Brown ER, McCauley N (1998) Effect of ignition tests for asphalt content on aggregate properties. In: Annual Meeting of the Transportation Research Board, Washington, DC
  114. Mallick RB, Brown ER (1999) Development of a method for early prediction of the asphalt content of hot-mix asphalt by ignition test. Transp Res Rec 61–69. https://doi.org/10.3141/1654-07
  115. McClean MD, Rinehart RD, Ngo L et al (2004) Inhalation and dermal exposure among asphalt paving workers. Ann Occup Hyg 48:663–671. https://doi.org/10.1093/annhyg/meh062 [DOI: 10.1093/annhyg/meh062]
  116. McDaniel R, Michael Anderson R (2001) Recommended use of reclaimed asphalt pavement in the Superpave mix design method: technician’s manual. (No. Project D9-12 FY’97)
  117. McDaniel R, Soleymani H, Anderson RM et al (2001) Recommended use of reclaimed asphalt pavement in the superpave mix design method : technician’s guidelines
  118. Mcgraw J, Iverson D, Schmidt G, Olson J (2001) Selection of an Alternative Asphalt Extraction Solvent. Minnesota
  119. Mckeen RG (1997) Asphalt content by ignition: round-robin experiment. New Mexico
  120. Mikhailenko P, Ataeian P, Baaj H (2020) Extraction and recovery of asphalt binder: a literature review. Int J Pavement Res Technol 13:20–31. https://doi.org/10.1007/s42947-019-0081-5 [DOI: 10.1007/s42947-019-0081-5]
  121. Mikhailenko P, Baaj H (2019) Comparison of chemical and microstructural properties of virgin and reclaimed asphalt pavement binders and their saturate, aromatic, resin, and asphaltene fractions. Energy Fuels 33:2633–2640. https://doi.org/10.1021/acs.energyfuels.8b03414 [DOI: 10.1021/acs.energyfuels.8b03414]
  122. Mikhailenko P, Kadhim H, Baaj H (2017) Observation of bitumen microstructure oxidation and blending with ESEM. Road Mater Pavement Des 18:216–225. https://doi.org/10.1080/14680629.2017.1304251 [DOI: 10.1080/14680629.2017.1304251]
  123. Mikhailenko P, Ringot E, Bertron A, Escadeillas G (2016) Determination of the performance and damage to asphalt of bio-sourced asphalt release agents (ARAs) part I: developing test methods. Mater Struct Constr 49:1403–1418. https://doi.org/10.1617/s11527-015-0585-7 [DOI: 10.1617/s11527-015-0585-7]
  124. Mikhailenko P, Webber G, Baaj H (2019) Evaluation of solvents for asphalt extraction. Road Mater Pavement Des 0:1–12. https://doi.org/10.1080/14680629.2019.1661277
  125. Mirwald J, Werkovits S, Camargo I et al (2020) Understanding bitumen ageing by investigation of its polarity fractions. Constr Build Mater 250:118809. https://doi.org/10.1016/j.conbuildmat.2020.118809 [DOI: 10.1016/j.conbuildmat.2020.118809]
  126. Mo S, Wang Y, Xiong F et al (2020) Changes of asphalt fumes in hot-mix asphalt pavement recycling. J Clean Prod 258:120586. https://doi.org/10.1016/j.jclepro.2020.120586 [DOI: 10.1016/j.jclepro.2020.120586]
  127. Mogawer W, Austerman A, Mohammad L, Kutay ME (2013a) Evaluation of high RAP-WMA asphalt rubber mixtures. Road Mater Pavement Des 14:129–147. https://doi.org/10.1080/14680629.2013.812846 [DOI: 10.1080/14680629.2013.812846]
  128. Mogawer WS, Booshehrian A, Vahidi S, Austerman AJ (2013b) Evaluating the effect of rejuvenators on the degree of blending and performance of high RAP, RAS, and RAP/RAS mixtures. Road Mater Pavement Des 14:193–213. https://doi.org/10.1080/14680629.2013.812836 [DOI: 10.1080/14680629.2013.812836]
  129. Mohajeri M, Molenaar AAA, Van de Ven MFC (2014) Experimental study into the fundamental understanding of blending between reclaimed asphalt binder and virgin bitumen using nanoindentation and nano-computed tomography. Road Mater Pavement Des 15:372–384. https://doi.org/10.1080/14680629.2014.883322 [DOI: 10.1080/14680629.2014.883322]
  130. Moniri A, Ziari H, Aliha MRM, Saghafi Y (2019) Laboratory study of the effect of oil-based recycling agents on high RAP asphalt mixtures. Int J Pavement Eng 0:1–12. https://doi.org/10.1080/10298436.2019.1696461
  131. Nahar S, Mohajeri M, Schmets A et al (2013) First observation of blending-zone morphology at interface of reclaimed asphalt binder and virgin bitumen. Transp Res Rec 1–9. https://doi.org/10.3141/2370-01
  132. Nahar SN, Qiu J, Schmets AJM et al (2014) Turning back time: rheological and microstructural assessment of rejuvenated bitumen. Transp Res Rec 2444:52–62. https://doi.org/10.3141/2444-06 [DOI: 10.3141/2444-06]
  133. Navaro J, Bruneau D, Drouadaine I et al (2012) Observation and evaluation of the degree of blending of reclaimed asphalt concretes using microscopy image analysis. Constr Build Mater 37:135–143. https://doi.org/10.1016/j.conbuildmat.2012.07.048 [DOI: 10.1016/j.conbuildmat.2012.07.048]
  134. Nazzal MD, Mogawer W, Austerman A et al (2015) Multi-scale evaluation of the effect of rejuvenators on the performance of high RAP content mixtures. Constr Build Mater 101:50–56. https://doi.org/10.1016/j.conbuildmat.2015.10.029 [DOI: 10.1016/j.conbuildmat.2015.10.029]
  135. NCAT (2014) NCAT researchers explore multiple uses of rejuvenators. Asph Technol News 26:7–16
  136. Newcomb DE, Nusser BJ, Kiggundu BM, Zallen DM (1984) Laboratory study of the effects of recycling modifiers on aged asphalt cement. Transp Res Rec 968:66–77
  137. Noureldin AS, Wood LE (1987) Rejuvenator diffusion in binder film for hot-mix recycled asphalt pavement. Transp Res Rec 1115:51–61
  138. Oliver JWH (2001) The influence of the binder in RAP on recycled asphalt properties. Road Mater Pavement Des 2:311–325. https://doi.org/10.1080/14680629.2001.9689906 [DOI: 10.1080/14680629.2001.9689906]
  139. Oliver JWH (1974) Diffusion of oils in asphalts. Ind Eng Chem Prod Res Dev 13:65–70. https://doi.org/10.1021/i360049a013 [DOI: 10.1021/i360049a013]
  140. Ongel A, Hugener M (2015) Impact of rejuvenators on aging properties of bitumen. Constr Build Mater 94:467–474. https://doi.org/10.1016/j.conbuildmat.2015.07.030 [DOI: 10.1016/j.conbuildmat.2015.07.030]
  141. Orešković M, Menegusso Pires G, Bressi S et al (2020) Quantitative assessment of the parameters linked to the blending between reclaimed asphalt binder and recycling agent: a literature review. Constr Build Mater 234. https://doi.org/10.1016/j.conbuildmat.2019.117323
  142. Orešković M, Bressi S, Di Mio G Lo Presti D (2017) Infuence of bio-based additives on RAP clustering and asphalt bider rheology. Bear Capacit Roads, Railw Airfields 1415–1422. https://doi.org/10.1201/9781315100333-187
  143. Pahlavan F, Rajib A, Deng S et al (2020) Investigation of balanced feedstocks of lipids and proteins to synthesize highly effective rejuvenators for oxidized asphalt. ACS Sustain Chem Eng 8:7656–7667. https://doi.org/10.1021/acssuschemeng.0c01100 [DOI: 10.1021/acssuschemeng.0c01100]
  144. Perraton D, Tebaldi G, Dave E et al (2016) Tests campaign analysis to evaluate the capability of fragmentation test to characterize recycled asphalt pavement (RAP) material. RILEM Bookseries 11:965–976. https://doi.org/10.1007/978-94-017-7342-3_77 [DOI: 10.1007/978-94-017-7342-3_77]
  145. Petersen JC (1984) Chemical composition of asphalt as related to asphalt durability: state of the art. Transp Res Rec 999:13–30
  146. Petersen JC, Barbour FA, Dorrence SM (1975) Identification of dicarboxylic anhydrides in oxidized asphalts. Anal Chem 47:107–111. https://doi.org/10.1021/ac60351a005 [DOI: 10.1021/ac60351a005]
  147. Petersen JC, Branthaver JF, Robertson RE et al (1993) Effects of physicochemical factors on asphalt oxidation kinetics. Transp Res Rec 1391:1–10
  148. Peterson GD, Davison RR, Glover CJ, Bullin JA (1994) Effect of composition on asphalt recycling agent performance. Transp Res Rec 1436:38–46
  149. Pfeiffer JP, Saal RNJ (1940) Asphaltic bitumen as colloid system. J Phys Chem 44:139–149. https://doi.org/10.1021/j150398a001 [DOI: 10.1021/j150398a001]
  150. Pirzadeh P, Kadhim H, Grant DL et al (2019) Impact of hot mix asphalt plant silo storage conditions on blending and diffusion between virgin and RAP binders. Road Mater Pavement Des 0:1–23. https://doi.org/10.1080/14680629.2019.1684346
  151. Prowell B, Carter C (2000) Evaluation of the effect on aggregate properties of samples extracted using the ignition furnace (No. VTRC 00-IR1). Virginia Transportation Research Council
  152. Qin Q, Schabron JF, Boysen RB, Farrar MJ (2014) Field aging effect on chemistry and rheology of asphalt binders and rheological predictions for field aging. Fuel 121:86–94. https://doi.org/10.1016/j.fuel.2013.12.040 [DOI: 10.1016/j.fuel.2013.12.040]
  153. Rad FY, Elwardany MD, Castorena C, Kim YR (2018) Evaluation of chemical and rheological aging indices to track oxidative aging of asphalt mixtures. Transp Res Rec 2672:349–358. https://doi.org/10.1177/0361198118784138 [DOI: 10.1177/0361198118784138]
  154. Rathore M, Zaumanis M (2020) Impact of laboratory mixing procedure on the properties of reclaimed asphalt pavement mixtures. Constr Build Mater 264:120709. https://doi.org/10.1016/j.conbuildmat.2020.120709 [DOI: 10.1016/j.conbuildmat.2020.120709]
  155. Redelius PO (2000) Solubility parameters and bitumen. Fuel 79:27–35. https://doi.org/10.1016/S0016-2361(99)00103-9 [DOI: 10.1016/S0016-2361(99)00103-9]
  156. Rinaldini E, Schuetz P, Partl MN et al (2014) Investigating the blending of reclaimed asphalt with virgin materials using rheology, electron microscopy and computer tomography. Compos Part B Eng 67:579–587. https://doi.org/10.1016/j.compositesb.2014.07.025 [DOI: 10.1016/j.compositesb.2014.07.025]
  157. Rodezno C, Julian G (2018) Asphalt binder extraction protocol for determining amount & pg characteristics of binders recovered from asphalt mixtures (No. Project 0092-16-02) Wisconsin Department of Transportation
  158. Rodezno MC, Brown ER (2017) Improving accuracy of asphalt content determination by ignition test. Asph Paving Technol Assoc Asph Paving Technol Tech Sess 86:145–164. https://doi.org/10.1080/14680629.2017.1389091 [DOI: 10.1080/14680629.2017.1389091]
  159. Roja KL, Masad E, Mogawer W (2020) Performance and blending evaluation of asphalt mixtures containing reclaimed asphalt pavement. Road Mater Pavement Des 0:1–17. https://doi.org/10.1080/14680629.2020.1764858
  160. Rostler F, White R (1960) Influence of chemical composition of asphalts on performance, particularly durability. Symp Road Paving Mater 64–64–25. https://doi.org/10.1520/stp38773s
  161. Kim S, Byron T, GA, Sholar JK (2007) Evaluation of use of high percentage of recycled asphalt pavement (RAP) for superpave mixtures. In: DOT/SMO/07–507 State Mater. Off. Florida Dep. Transp. Florida, USA. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+Kim%2C+T.+Byron%2C+G.A.+Sholar%2C+J.+Kim%2C+Evaluation+of+Use+of+High+Percentage+of+Reclaimed+Asphalt+Pavement+%28RAP%29+for+Superpave+Mixtures.+DOT%2FSMO%2F07-507.+State+Materials+Office%2C+Flori . Accessed 18 Dec 2022
  162. Saal RNJ, Labout JWA (1940) Rheological properties of asphaltic bitumens. J Phys Chem 44:149–165. https://doi.org/10.1021/j150398a002 [DOI: 10.1021/j150398a002]
  163. Sabaaly PE, Abdel-Magied O, Dunn M, Brinkmeyer W (2002) Influence of hot-mix asphalt parameters on the correction factors of the ignition oven test. J Test Eval 30:228–238. https://doi.org/10.1520/jte12310j [DOI: 10.1520/jte12310j]
  164. Servas VP (1984) Recycling of bituminous pavement materials (Doctoral dissertation)
  165. Shah A, McDaniel RS, Huber GA, Gallivan VL (2007) Investigation of properties of plant-produced reclaimed asphalt pavement mixtures. Transp Res Rec 103–111. https://doi.org/10.3141/1998-13
  166. Shen J, Amirkhanian S, Aune JM (2007) Effects of rejuvenating agents on superpave mixtures containing reacliamed asphalt mixture. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)0899-1561(2007)19 [DOI: 10.1061/(ASCE)0899-1561(2007)19]
  167. Shen J, Huang B, Hachiya Y (2004) Validation of performance-based method for determining rejuvenator content in HMA. Int J Pavement Eng 5:103–109. https://doi.org/10.1080/10298430410001733509 [DOI: 10.1080/10298430410001733509]
  168. Shirodkar P, Mehta Y, Nolan A et al (2013) Development of blending chart for different degrees of blending of RAP binder and virgin binder. Resour Conserv Recycl 73:156–161. https://doi.org/10.1016/j.resconrec.2013.01.018 [DOI: 10.1016/j.resconrec.2013.01.018]
  169. Shirodkar P, Mehta Y, Nolan A et al (2011) A study to determine the degree of partial blending of reclaimed asphalt pavement (RAP) binder for high RAP hot mix asphalt. Constr Build Mater 25:150–155. https://doi.org/10.1016/j.conbuildmat.2010.06.045 [DOI: 10.1016/j.conbuildmat.2010.06.045]
  170. Shirodkar P, Sonpal K, Mehta Y et al (2010) Impact of different extraction recovery method on allowable percentage of reclaimed asphalt pavement (RAP). In: Paving Materials and Pavement Analysis. American Society of Civil Engineers (ASCE), pp 75–81
  171. Siddiqui MN, Ali MF (1999) Investigation of chemical transformations by NMR and GPC during the laboratory aging of Arabian asphalt. Fuel 78:1407–1416. https://doi.org/10.1016/S0016-2361(99)00080-0 [DOI: 10.1016/S0016-2361(99)00080-0]
  172. Silva HMRD, Oliveira JRM, Jesus CMG (2012) Are totally recycled hot mix asphalts a sustainable alternative for road paving? Resour Conserv Recycl 60:38–48. https://doi.org/10.1016/j.resconrec.2011.11.013 [DOI: 10.1016/j.resconrec.2011.11.013]
  173. Sirin O, Paul DK, Kassem E (2018) State of the art study on aging of asphalt mixtures and use of antioxidant additives. Adv Civ Eng 2018. https://doi.org/10.1155/2018/3428961
  174. Sirin O, Paul DK, Kassem E, Ohiduzzaman M (2017) Effect of aging on asphalt binders in the state of Qatar: a case study. Asph Paving Technol Assoc Asph Paving Technol Tech Sess 86:215–243. https://doi.org/10.1080/14680629.2017.1389094 [DOI: 10.1080/14680629.2017.1389094]
  175. Sondag MS, Bruce C, Drescher A (2002) Investigation of recycled asphalt pavement (RAP) mixtures. Minnesota Local Road Res Board 15:93
  176. Stephens JE, Mahoney J, Dippold C (2001) Determination of the Pg binder gradein a rap mix (No. JHR 00-278) Connecticut. Dept. of Transportation
  177. Stimilli A, Virgili A, Canestrari F (2015) New method to estimate the “re-activated” binder amount in recycled hot-mix asphalt. Road Mater Pavement Des 16:442–459. https://doi.org/10.1080/14680629.2015.1029678 [DOI: 10.1080/14680629.2015.1029678]
  178. Su JF (2020) Self-healing pavements using microcapsules containing rejuvenator: from idea to real application. Eco-efficient Pavement Constr Mater 249–314. https://doi.org/10.1016/B978-0-12-818981-8.00011-4
  179. Su JF, Schlangen E, Qiu J (2013) Design and construction of microcapsules containing rejuvenator for asphalt. Powder Technol 235:563–571. https://doi.org/10.1016/j.powtec.2012.11.013 [DOI: 10.1016/j.powtec.2012.11.013]
  180. Su K, Hachiya Y, Maekawaa R (2009) Study on recycled asphalt concrete for use in surface course in airport pavement. Resour Conserv Recycl 54:37–44. https://doi.org/10.1016/j.resconrec.2009.06.003 [DOI: 10.1016/j.resconrec.2009.06.003]
  181. Sultana S, Bhasin A (2014) Effect of chemical composition on rheology and mechanical properties of asphalt binder. Constr Build Mater 72:293–300. https://doi.org/10.1016/j.conbuildmat.2014.09.022 [DOI: 10.1016/j.conbuildmat.2014.09.022]
  182. Swanson JM (1942) A contribution to the physical chemistry of the asphalts. J Phys Chem 46:141–150. https://doi.org/10.1021/j150415a017
  183. Tabatabaee HA, Kurth TL (2017) Analytical investigation of the impact of a novel bio-based recycling agent on the colloidal stability of aged bitumen. Road Mater Pavement Des 18:131–140. https://doi.org/10.1080/14680629.2017.1304257 [DOI: 10.1080/14680629.2017.1304257]
  184. Tebaldi G, Dave E, Cannone Falchetto A et al (2019) Recommendation of RILEM TC237-SIB on fragmentation test for recycled asphalt. Mater Struct Constr 52:1–6. https://doi.org/10.1617/s11527-019-1365-6 [DOI: 10.1617/s11527-019-1365-6]
  185. Tebaldi G, Dave E, Cannone Falchetto A et al (2018a) Recommendation of RILEM TC237-SIB on cohesion test of recycled asphalt. Mater Struct Constr 51:1–6. https://doi.org/10.1617/s11527-018-1238-4 [DOI: 10.1617/s11527-018-1238-4]
  186. Tebaldi G, Dave EV, Cannone Falchetto A et al (2018b) Recommendation of RILEM TC237-SIB: protocol for characterization of recycled asphalt (RA) materials for pavement applications. Mater Struct Constr 51:1–8. https://doi.org/10.1617/s11527-018-1253-5 [DOI: 10.1617/s11527-018-1253-5]
  187. Terrel RL, Fritchen DR (1978) Laboratory performance of recycled asphalt concrete. ASTM Spec Tech Publ 104–112. https://doi.org/10.1520/stp35777s
  188. Tex-210-F (2016) Determining asphalt content of bituminous mixtures by extraction. 1–26
  189. Thakur SC, Han J, Chong WK, Parsons RL (2011) Comparison of properties of RAP aggregates extracted by ignition and centrifuge methods. Geo-frontiers Congr 4525–4534. https://doi.org/10.1061/41165(397)463
  190. Thenoux G, Bell CA, Wilson JE et al (1985) Evaluation of asphalt properties and their relationship to pavement performance interim report: literature review and development of composition analysis method
  191. Tran NH, Taylor A, Willis R (2012) Effect of rejuvenator on performance properties of HMA mixtures with high RAP and RAS content NCAT Report 12-05
  192. Vallerga BA, Halstead WJ (1971) Effects of field aging on fundamental properties of paving asphalts. Highw Res Rec 361:71–92
  193. Vassaux S, Gaudefroy V, Boulangé L et al (2018) Study of remobilization phenomena at reclaimed asphalt binder/virgin binder interphases for recycled asphalt mixtures using novel microscopic methodologies. Constr Build Mater 165:846–858. https://doi.org/10.1016/j.conbuildmat.2018.01.055 [DOI: 10.1016/j.conbuildmat.2018.01.055]
  194. Ventura A, Jullien A, Monéron P (2007) Polycyclic aromatic hydrocarbons emitted from a hot-mix drum, asphalt plant: study of the influence from use of recycled bitumen. J Environ Eng Sci 6:727–734. https://doi.org/10.1139/S07-022 [DOI: 10.1139/S07-022]
  195. Wakefield A, Anderson RM, McKay Z, Tighe SL (2018) A Review of Solvent Extraction-Recovery Procedures and their Effect on Recovered Asphalt Binder Properties. In: Canadian Technical Asphalt Association. pp 476–496
  196. Wang D, Cannone Falchetto A, Hugener M et al (2022) Effect of aging on the rheological properties of blends of virgin and rejuvenated ra binders. RILEM Bookseries 27:3–10. https://doi.org/10.1007/978-3-030-46455-4_1
  197. Wang F, Wang Z, Li C et al (2017) The rejuvenating effect in hot asphalt recycling by mortar transfer ratio and image analysis. Materials (basel) 10:1–11. https://doi.org/10.3390/ma10060574 [DOI: 10.3390/ma10060574]
  198. Waters J, Rivera RL (2018) Environmental impacts of pavement rejuvenators. In: 2018 AIChE Annual Meeting. AIChE
  199. West R, Kvasnak A, Tran N et al (2009) Testing of moderate and high reclaimed asphalt pavement content mixes: laboratory and accelerated field performance testing at the National Center for Asphalt Technology test track. Transp Res Rec 100–108. https://doi.org/10.3141/2126-12
  200. West RC, Willis JR, Marasteanu MO (2013) Improved mix design, evaluation, and materials management practices for hot mix asphalt with high reclaimed asphalt pavement content (Vol. 752). Transp Res Board. https://doi.org/10.17226/22554
  201. Williams BA, Willis JR, Shacat J (2019) Annual Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2018, 9th Annual Survey (IS 138)
  202. Willis J, Turner P, De Goes Padula F et al (2013) Effects of changing virgin binder grade and content on high reclaimed asphalt pavement mixture properties. Transp Res Rec 66–73. https://doi.org/10.3141/2371-08
  203. Willis R, Tran NH, Leed PE (2015) Rejuvenators: Bring life back to aging asphalt binder. Asph Pavement Mag 36–41
  204. Wróbel M, Woszuk A, Ratajczak M, Franus W (2021) Properties of reclaimed asphalt pavement mixture with organic rejuvenator. Constr Build Mater 271. https://doi.org/10.1016/j.conbuildmat.2020.121514
  205. Wu J, Liu Q, Yang S et al (2020) Study of migration and diffusion during the mixing process of asphalt mixtures with RAP. 0629: https://doi.org/10.1080/14680629.2019.1710237
  206. Wu S, Qiu J, Mo L et al (2007) Investigation of temperature characteristics of recycled hot mix asphalt mixtures. Resour Conserv Recycl 51:610–620. https://doi.org/10.1016/j.resconrec.2006.11.005 [DOI: 10.1016/j.resconrec.2006.11.005]
  207. Xiang Q, Hou X, Zhao Z et al (2020) Comparative evaluation of methods for removing residual mineral fillers during bitumen extraction and recovery based on FTIR. J Mater Civ Eng 32:04020357. https://doi.org/10.1061/(asce)mt.1943-5533.0003452 [DOI: 10.1061/(asce)mt.1943-5533.0003452]
  208. Xiao Y, Yan B, Zhang X et al (2020) Study the diffusion characteristics of rejuvenator oil in aged asphalt binder by image thresholding and GC–MS tracer analysis. Constr Build Mater 249:118782. https://doi.org/10.1016/j.conbuildmat.2020.118782 [DOI: 10.1016/j.conbuildmat.2020.118782]
  209. Xie Z, Rizvi H, Purdy C et al (2019) Effect of rejuvenator types and mixing procedures on volumetric properties of asphalt mixtures with 50% RAP. Constr Build Mater 218:457–464. https://doi.org/10.1016/j.conbuildmat.2019.05.093 [DOI: 10.1016/j.conbuildmat.2019.05.093]
  210. Xu J, Hao P, Zhang D, Yuan G (2018) Investigation of reclaimed asphalt pavement blending efficiency based on micro-mechanical properties of layered asphalt binders. Constr Build Mater 163:390–401. https://doi.org/10.1016/j.conbuildmat.2017.12.030 [DOI: 10.1016/j.conbuildmat.2017.12.030]
  211. Xu Y, Chou Z, Li Y et al (2019) Effect of blending degree between virgin and aged binder on pavement performance of recycled asphalt mixture with high RAP content. Adv Mater Sci Eng 2019. https://doi.org/10.1155/2019/5741642
  212. Yan Y, Roque R, Cocconcelli C et al (2017) Evaluation of cracking performance for polymer-modified asphalt mixtures with high RAP content. Road Mater Pavement Des 18:450–470. https://doi.org/10.1080/14680629.2016.1266774 [DOI: 10.1080/14680629.2016.1266774]
  213. Yin F, Epps Martin A, Arámbula-Mercado E, Newcomb D (2017) Characterization of non-uniform field aging in asphalt pavements. Constr Build Mater 153:607–615. https://doi.org/10.1016/j.conbuildmat.2017.07.144 [DOI: 10.1016/j.conbuildmat.2017.07.144]
  214. Yu S, Shen S, Zhang C et al (2017) Evaluation of the blending effectiveness of reclaimed asphalt pavement binder. J Mater Civ Eng 29:04017230. https://doi.org/10.1061/(asce)mt.1943-5533.0002095 [DOI: 10.1061/(asce)mt.1943-5533.0002095]
  215. Yu X, Zaumanis M, Dos Santos S, Poulikakos LD (2014) Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel 135:162–171. https://doi.org/10.1016/j.fuel.2014.06.038 [DOI: 10.1016/j.fuel.2014.06.038]
  216. Yuhong Wang PE, Zhao K, Glover C et al (2015) Effects of aging on the properties of asphalt at the nanoscale. Constr Build Mater 80:244–254. https://doi.org/10.1016/j.conbuildmat.2015.01.059 [DOI: 10.1016/j.conbuildmat.2015.01.059]
  217. Zaumanis M, Arraigada M, Wyss SA et al (2019) Performance-based design of 100% recycled hot-mix asphalt and validation using traffic load simulator. J Clean Prod 237:117679. https://doi.org/10.1016/j.jclepro.2019.117679 [DOI: 10.1016/j.jclepro.2019.117679]
  218. Zaumanis M, Boesiger L, Kunz B et al (2019b) Determining optimum rejuvenator addition location in asphalt production plant. Constr Build Mater 198:368–378. https://doi.org/10.1016/j.conbuildmat.2018.11.239 [DOI: 10.1016/j.conbuildmat.2018.11.239]
  219. Zaumanis M, Cavalli MC, Poulikakos LD (2020) Effect of rejuvenator addition location in plant on mechanical and chemical properties of RAP binder. Int J Pavement Eng 21:507–515. https://doi.org/10.1080/10298436.2018.1492133 [DOI: 10.1080/10298436.2018.1492133]
  220. Zaumanis M, Mallick RB (2013) Finite element modelling of rejuvenator diffusion in RAP bider film - simulation of plant mixing process. Springer 8:325–341. https://doi.org/10.1007/978-94-007-6878-9 [DOI: 10.1007/978-94-007-6878-9]
  221. Zaumanis M, Mallick RB (2015) Review of very high-content reclaimed asphalt use in plant-produced pavements: state of the art. Int J Pavement Eng 16:39–55. https://doi.org/10.1080/10298436.2014.893331 [DOI: 10.1080/10298436.2014.893331]
  222. Zaumanis M, Mallick RB, Frank R (2014a) 100% recycled hot mix asphalt: a review and analysis. Resour Conserv Recycl 92:230–245. https://doi.org/10.1016/j.resconrec.2014.07.007 [DOI: 10.1016/j.resconrec.2014.07.007]
  223. Zaumanis M, Mallick RB, Frank R (2016) 100% hot mix asphalt recycling: challenges and benefits. Transp Res Procedia 14:3493–3502. https://doi.org/10.1016/j.trpro.2016.05.315 [DOI: 10.1016/j.trpro.2016.05.315]
  224. Zaumanis M, Mallick RB, Frank R (2014b) Determining optimum rejuvenator dose for asphalt recycling based on Superpave performance grade specifications. Constr Build Mater 69:159–166. https://doi.org/10.1016/j.conbuildmat.2014.07.035 [DOI: 10.1016/j.conbuildmat.2014.07.035]
  225. Zaumanis M, Mallick RB, Frank R (2015) Evaluation of different recycling agents for restoring aged asphalt binder and performance of 100 % recycled asphalt. Mater Struct 48:2475–2488. https://doi.org/10.1617/s11527-014-0332-5 [DOI: 10.1617/s11527-014-0332-5]
  226. Zaumanis M, Mallick RB, Poulikakos L, Frank R (2014c) Influence of six rejuvenators on the performance properties of reclaimed asphalt pavement (RAP) binder and 100% recycled asphalt mixtures. Comput Chem Eng 71:538–550. https://doi.org/10.1016/j.conbuildmat.2014.08.073 [DOI: 10.1016/j.conbuildmat.2014.08.073]
  227. Zhang K, Wen H, Hobbs A (2015) Laboratory tests and numerical simulations of mixing superheated virgin aggregate with reclaimed asphalt pavement materials. Transp Res Rec 2506:62–71. https://doi.org/10.3141/2506-07 [DOI: 10.3141/2506-07]
  228. Zhang W (1996) Determinationof asphalt content by ignition method (No. MN/PR-96/30)
  229. Zhao S, Huang B, Shu X (2015) Investigation on binder homogeneity of RAP/RAS mixtures through staged extraction. Constr Build Mater 82:184–191. https://doi.org/10.1016/j.conbuildmat.2015.02.013 [DOI: 10.1016/j.conbuildmat.2015.02.013]
  230. Zhao S, Huang B, Shu X, Woods ME (2016) Quantitative evaluation of blending and diffusion in high RAP and RAS mixtures. Mater Des 89:1161–1170. https://doi.org/10.1016/j.matdes.2015.10.086 [DOI: 10.1016/j.matdes.2015.10.086]
  231. Zhu J, Ma T, Fan J et al (2020) Experimental study of high modulus asphalt mixture containing reclaimed asphalt pavement. J Clean Prod 263:121447. https://doi.org/10.1016/j.jclepro.2020.121447 [DOI: 10.1016/j.jclepro.2020.121447]
  232. Ziyani L, Boulangé L, Nicolaï A, Mouillet V (2017) Bitumen extraction and recovery in road industry: a global methodology in solvent substitution from a comprehensive review. J Clean Prod 161:53–68. https://doi.org/10.1016/j.jclepro.2017.05.022 [DOI: 10.1016/j.jclepro.2017.05.022]

MeSH Term

Dust
Hydrocarbons
Recycling

Chemicals

asphalt
Dust
Hydrocarbons

Word Cloud

Similar Articles

Cited By