Demtröder W (2010) Experimentalphysik 3: Kern-, Teilchen-und Astrophysik, 4th edn. Springer, Berlin
[DOI:
10.1007/978-3-642-01598-4]
Binnig G, Rohrer H, Gerber C et al (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57
[DOI:
10.1103/PhysRevLett.49.57]
de Pablo PJ (2011) Introduction to atomic force microscopy. In: Method molecule biology, Humana Press, Totowa, NJ, Springer, 738:197–212
Santos NC, Carvalho FA (2019) Atomic force microscopy. In: Meth Mol biol, vol 1886. Springer, Berlin
Kodera N, Ando T (2014) The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 6(3):237–260
[DOI:
10.1007/s12551-014-0141-7]
Marchetti M, Wuite G, Roos W (2016) Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr Opin Virol 18:82–88
[DOI:
10.1016/j.coviro.2016.05.002]
Krieg M, Fläschner G, Alsteens D et al (2019) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1(1):41–57
[DOI:
10.1038/s42254-018-0001-7]
Morris VJ, Kirby AR, Gunning PA (2009) Atomic force microscopy for biologists, 2nd edn. Imperial College Press, London
[DOI:
10.1142/p674]
Vorselen D, van Dommelen SM, Sorkin R et al (2018) The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis. Nat Commun 9(1):1–9
[DOI:
10.1038/s41467-018-07445-x]
Maity S, Trinco G, Buzón P et al (2022) High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS. Proc Natl Acad Sci U S A 119(6):e2113927119
[DOI:
10.1073/pnas.2113927119]
Müller DJ, Dumitru AC, Lo Giudice C et al (2020) Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem Rev 121(19):11701–11725
[DOI:
10.1021/acs.chemrev.0c00617]
Eaton P, West P (2010) Atomic force microscopy. Oxford university press, Oxford
[DOI:
10.1093/acprof]
Uchihashi T, Scheuring S (2018) Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. Biochim Biophys Acta Gen Subj 1862(2):229–240
[DOI:
10.1016/j.bbagen.2017.07.010]
Ando T (2022) High-speed atomic force microscopy in biology: directly watching dynamics of biomolecules in action. Springer, Heidelberg
[DOI:
10.1007/978-3-662-64785-1]
Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53(12):1045–1047
[DOI:
10.1063/1.100061]
Churnside AB, Sullan RMA, Nguyen DM et al (2012) Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy. Nano Lett 12(7):3557–3561
[DOI:
10.1021/nl301166w]
Sader JE, Chon JW, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70(10):3967–3969
[DOI:
10.1063/1.1150021]
Vorselen D, Kooreman ES, Wuite GJ et al (2016) Controlled tip wear on high roughness surfaces yields gradual broadening and rounding of cantilever tips. Sci Rep 6(1):1–7
[DOI:
10.1038/srep36972]
Heath GR, Kots E, Robertson JL et al (2021) Localization atomic force microscopy. Nature 594(7863):385–390
[DOI:
10.1038/s41586-021-03551-x]
Hölscher H, Allers W, Schwarz U et al (2000) Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy. Phys Rev B 62(11):6967
[DOI:
10.1103/PhysRevB.62.6967]
Ho H, West P (1996) Optimizing AC-mode atomic force microscope imaging. J Scan Microsc 18(5):339–343
Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226
[DOI:
10.1038/nnano.2012.38]
Martínez NF, García R (2006) Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 17(7):S167
[DOI:
10.1088/0957-4484/17/7/S11]
Rodrıguez TR, Garcı́a R (2004) Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl Phys Lett 84(3):449–451
[DOI:
10.1063/1.1642273]
Martinez N, Lozano JR, Herruzo E et al (2008) Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 19(38):384011
[DOI:
10.1088/0957-4484/19/38/384011]
Martínez-Martín D, Herruzo ET, Dietz C et al (2011) Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys Rev Lett 106(19):198101
[DOI:
10.1103/PhysRevLett.106.198101]
Patil S, Martinez NF, Lozano JR et al (2007) Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J Mol Recognit 20(6):516–523
[DOI:
10.1002/jmr.848]
De Pablo P, Colchero J, Gomez-Herrero J et al (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73(22):3300–3302
[DOI:
10.1063/1.122751]
Moreno-Herrero F, Colchero J, Gomez-Herrero J et al (2004) Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Phys Rev E 69(3):031915
[DOI:
10.1103/PhysRevE.69.031915]
JPK Instruments (2011) Nanowizard 4–the next benchmark for BioAFM. JPK Instruments, Berlin
Bruker (2015) Peak-force tapping – how AFM should be. Bruker Nano Surfaces Division, Goleta
Zemła J, Danilkiewicz J, Orzechowska B et al (2018) Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol 73:115–124
[DOI:
10.1016/j.semcdb.2017.06.029]
Scholl ZN, Li Q, Josephs E et al (2019) Force spectroscopy of single protein molecules using an atomic force microscope. JoVE (144):e55989
De Pablo P, Colchero J, Gomez-Herrero J et al (1999) Adhesion maps using scanning force microscopy techniques. J Adhes 71(4):339–356
[DOI:
10.1080/00218469908014547]
Viljoen A, Mathelié-Guinlet M, Ray A et al (2021) Force spectroscopy of single cells using atomic force microscopy. Nat Rev Methods Primers 1(1):1–24
[DOI:
10.1038/s43586-021-00062-x]
Mitsui K, Hara M, Ikai A (1996) Mechanical unfolding of a2-macroglobulin molecules with atomic force microscope. FEBS Lett 385(1–2):29–33
[DOI:
10.1016/0014-5793(96)00319-5]
Rief M, Gautel M, Oesterhelt F et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112
[DOI:
10.1126/science.276.5315.1109]
Maity S, Lyubchenko YL (2019) Force clamp approach for characterization of nano-assembly in amyloid beta 42 dimer. Nanoscale 11(25):12259–12265
[DOI:
10.1039/C9NR01670H]
Mignolet J, Mathelié-Guinlet M, Viljoen A et al (2021) AFM force-clamp spectroscopy captures the nanomechanics of the Tad pilus retraction. Nanoscale Horiz 6(6):489–496
[DOI:
10.1039/D1NH00158B]
Wang Y-F, Zhang Q, Tian F et al (2022) Spatiotemporal tracing of the cellular internalization process of rod-shaped nanostructures. ACS Nano 16(3):4059–4071
[DOI:
10.1021/acsnano.1c09684]
Medalsy I, Hensen U, Muller DJ (2011) Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force–volume AFM. Angew Chem Int Ed 50(50):12103–12108
[DOI:
10.1002/anie.201103991]
Yang Y, Xiao X, Peng Y et al (2019) The comparison between force volume and peak force quantitative nanomechanical mode of atomic force microscope in detecting cell’s mechanical properties. Microsc Res Tech 82(11):1843–1851
Penedo M, Miyazawa K, Okano N et al (2021) Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. Sci Adv 7(52):eabj4990
[DOI:
10.1126/sciadv.abj4990]
Baclayon M, Wuite G, Roos W (2010) Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter 6(21):5273–5285
[DOI:
10.1039/b923992h]
Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct 25(1):395–429
[DOI:
10.1146/annurev.bb.25.060196.002143]
Farge G, Mehmedovic M, Baclayon M et al (2014) In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription. Cell Rep 8(1):66–74
[DOI:
10.1016/j.celrep.2014.05.046]
Sanchez H, Kanaar R, Wyman C (2010) Molecular recognition of DNA–protein complexes: a straightforward method combining scanning force and fluorescence microscopy. Ultramicroscopy 110(7):844–851
[DOI:
10.1016/j.ultramic.2010.03.002]
Falvo M, Washburn S, Superfine R et al (1997) Manipulation of individual viruses: friction and mechanical properties. Biophys J 72(3):1396–1403
[DOI:
10.1016/S0006-3495(97)78786-1]
van der Heijden T, Moreno-Herrero F, Kanaar R et al (2006) Comment on “Direct and real-time visualization of the disassembly of a single RecA-DNA-ATPγS complex using AFM imaging in fluid”. Nano Lett 6(12):3000–3002
[DOI:
10.1021/nl061746j]
Ando T (2018) High-speed atomic force microscopy and its future prospects. Biophys Rev 10(2):285–292
[DOI:
10.1007/s12551-017-0356-5]
Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98(22):12468–12472
[DOI:
10.1073/pnas.211400898]
Ando T, Uchihashi T, Kodera N et al (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflug Arch Eur J Physiol 456(1):211–225
[DOI:
10.1007/s00424-007-0406-0]
Kodera N, Yamamoto D, Ishikawa R et al (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468(7320):72–76
[DOI:
10.1038/nature09450]
Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83(7–9):337–437
[DOI:
10.1016/j.progsurf.2008.09.001]
Miyagi A, Scheuring S (2018) A novel phase-shift-based amplitude detector for a high-speed atomic force microscope. Rev Sci Instrum 89(8):083704
[DOI:
10.1063/1.5038095]
Yang C, Yan J, Dukic M et al (2016) Design of a high-bandwidth tripod scanner for high speed atomic force microscopy. Scanning 38(6):889–900
[DOI:
10.1002/sca.21338]
Fukuda S, Ando T (2021) Faster high-speed atomic force microscopy for imaging of biomolecular processes. Rev Sci Instrum 92(3):033705
[DOI:
10.1063/5.0032948]
Matin TR, Heath GR, Huysmans GH et al (2020) Millisecond dynamics of an unlabeled amino acid transporter. Nat Commun 11(1):1–11
[DOI:
10.1038/s41467-020-18811-z]
Perrino AP, Miyagi A, Scheuring S (2021) Single molecule kinetics of bacteriorhodopsin by HS-AFM. Nat Commun 12(1):1–10
[DOI:
10.1038/s41467-021-27580-2]
Uchihashi T, Watanabe H, Fukuda S et al (2016) Functional extension of high-speed AFM for wider biological applications. Ultramicroscopy 160:182–196
[DOI:
10.1016/j.ultramic.2015.10.017]
Valbuena A, Maity S, Mateu MG et al (2020) Visualization of single molecules building a viral capsid protein lattice through stochastic pathways. ACS Nano 14(7):8724–8734
[DOI:
10.1021/acsnano.0c03207]
Gisbert VG, Benaglia S, Uhlig MR et al (2021) High-speed nanomechanical mapping of the early stages of collagen growth by bimodal force microscopy. ACS Nano 15(1):1850–1857
[DOI:
10.1021/acsnano.0c10159]
Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47(31):7986–7998
[DOI:
10.1021/bi800753x]
Lamolle SF, Monjo M, Lyngstadaas SP et al (2009) Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance. J Biomed Mater Res A 88(3):581–588
[DOI:
10.1002/jbm.a.31898]
Larsson Wexell C, Thomsen P, Aronsson B-O et al (2013) Bone response to surface-modified titanium implants: studies on the early tissue response to implants with different surface characteristics. Int J Biomater 2013:412482
[DOI:
10.1155/2013/412482]
Kroeze R, Helder M, Roos W et al (2010) The effect of ethylene oxide, glow discharge and electron beam on the surface characteristics of poly (L-lactide-co-caprolactone) and the corresponding cellular response of adipose stem cells. Acta Biomater 6(6):2060–2065
[DOI:
10.1016/j.actbio.2009.11.022]
Alsteens D, Gaub HE, Newton R et al (2017) Atomic force microscopy-based characterization and design of biointerfaces. Nat Rev Mater 2(5):1–16
[DOI:
10.1038/natrevmats.2017.8]
Baclayon M, Pv U, Mouhib H et al (2016) Mechanical unfolding of an autotransporter passenger protein reveals the secretion starting point and processive transport intermediates. ACS Nano 10(6):5710–5719
[DOI:
10.1021/acsnano.5b07072]
Delguste M, Zeippen C, Machiels B et al (2018) Multivalent binding of herpesvirus to living cells is tightly regulated during infection. Sci Adv 4(8):eaat1273
[DOI:
10.1126/sciadv.aat1273]
Maity S, Mazzolini M, Arcangeletti M et al (2015) Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy. Nat Commun 6(1):1–16
[DOI:
10.1038/ncomms8093]
Koehler M, Lo Giudice C, Vogl P et al (2020) Control of ligand-binding specificity using photocleavable linkers in AFM force spectroscopy. Nano Lett 20(5):4038–4042
[DOI:
10.1021/acs.nanolett.0c01426]
Buzón P, Maity S, Roos WH (2020) Physical virology: from virus self-assembly to particle mechanics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12(4):e1613
[DOI:
10.1002/wnan.1613]
Mateu MG (2012) Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective. Virus Res 168(1–2):1–22
[DOI:
10.1016/j.virusres.2012.06.008]
Roos W, Bruinsma R, Wuite G (2010) Physical virology. Nat Phys 6(10):733–743
[DOI:
10.1038/nphys1797]
Vorselen D, Piontek MC, Roos WH et al (2020) Mechanical characterization of liposomes and extracellular vesicles, a protocol. Front Mol Biosci 7:139
[DOI:
10.3389/fmolb.2020.00139]
Roos WH, Gertsman I, May ER et al (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci U S A 109(7):2342–2347
[DOI:
10.1073/pnas.1109590109]
Carrasco C, Luque A, Hernando-Pérez M et al (2011) Built-in mechanical stress in viral shells. Biophys J 100(4):1100–1108
[DOI:
10.1016/j.bpj.2011.01.008]
Baclayon M, Shoemaker GK, Uetrecht C et al (2011) Prestress strengthens the shell of Norwalk virus nanoparticles. Nano Lett 11(11):4865–4869
[DOI:
10.1021/nl202699r]
Denning D, Bennett S, Mullen T et al (2019) Maturation of adenovirus primes the protein nano-shell for successful endosomal escape. Nanoscale 11(9):4015–4024
[DOI:
10.1039/C8NR10182E]
Snijder J, Ivanovska I, Baclayon M et al (2012) Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron 43(12):1343–1350
[DOI:
10.1016/j.micron.2012.04.011]
Rico F, Russek A, Gonzalez L et al (2019) Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. Proc Natl Acad Sci U S A 116(14):6594–6601
[DOI:
10.1073/pnas.1816909116]
Roos WH, Radtke K, Kniesmeijer E et al (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A 106(24):9673–9678
[DOI:
10.1073/pnas.0901514106]