Atomic Force Microscopy: An Introduction.

Yuzhen Feng, Wouter H Roos
Author Information
  1. Yuzhen Feng: Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands.
  2. Wouter H Roos: Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands. w.h.roos@rug.nl.

Abstract

Imaging of nano-sized particles and sample features is crucial in a variety of research fields, for instance, in biological sciences, where it is paramount to investigate structures at the single particle level. Often, two-dimensional images are not sufficient, and further information such as topography and mechanical properties are required. Furthermore, to increase the biological relevance, it is desired to perform the imaging in close to physiological environments. Atomic force microscopy (AFM) meets these demands in an all-in-one instrument. It provides high-resolution images including surface height information leading to three-dimensional information on sample morphology. AFM can be operated both in air and in buffer solutions. Moreover, it has the capacity to determine protein and membrane material properties via the force spectroscopy mode. Here we discuss the principles of AFM operation and provide examples of how biomolecules can be studied. New developments in AFM are discussed, and by including approaches such as bimodal AFM and high-speed AFM (HS-AFM), we show how AFM can be used to study a variety of static and dynamic single biomolecules and biomolecular assemblies.

Keywords

References

Demtröder W (2010) Experimentalphysik 3: Kern-, Teilchen-und Astrophysik, 4th edn. Springer, Berlin [DOI: 10.1007/978-3-642-01598-4]
Binnig G, Rohrer H, Gerber C et al (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57 [DOI: 10.1103/PhysRevLett.49.57]
Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930 [DOI: 10.1103/PhysRevLett.56.930]
de Pablo PJ (2011) Introduction to atomic force microscopy. In: Method molecule biology, Humana Press, Totowa, NJ, Springer, 738:197–212
Voigtländer B (2019) Atomic force microscopy. Springer, Berlin [DOI: 10.1007/978-3-030-13654-3]
Santos NC, Carvalho FA (2019) Atomic force microscopy. In: Meth Mol biol, vol 1886. Springer, Berlin
Kodera N, Ando T (2014) The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 6(3):237–260 [DOI: 10.1007/s12551-014-0141-7]
Marchetti M, Wuite G, Roos W (2016) Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr Opin Virol 18:82–88 [DOI: 10.1016/j.coviro.2016.05.002]
Krieg M, Fläschner G, Alsteens D et al (2019) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1(1):41–57 [DOI: 10.1038/s42254-018-0001-7]
Morris VJ, Kirby AR, Gunning PA (2009) Atomic force microscopy for biologists, 2nd edn. Imperial College Press, London [DOI: 10.1142/p674]
Vorselen D, van Dommelen SM, Sorkin R et al (2018) The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis. Nat Commun 9(1):1–9 [DOI: 10.1038/s41467-018-07445-x]
Maity S, Trinco G, Buzón P et al (2022) High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS. Proc Natl Acad Sci U S A 119(6):e2113927119 [DOI: 10.1073/pnas.2113927119]
Müller DJ, Dumitru AC, Lo Giudice C et al (2020) Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem Rev 121(19):11701–11725 [DOI: 10.1021/acs.chemrev.0c00617]
Bruinsma RF, Wuite GJ, Roos WH (2021) Physics of viral dynamics. Nat Rev Phys 3(2):76–91 [DOI: 10.1038/s42254-020-00267-1]
Eaton P, West P (2010) Atomic force microscopy. Oxford university press, Oxford [DOI: 10.1093/acprof]
Ando T (2012) High-speed atomic force microscopy coming of age. Nanotechnology 23(6):062001 [DOI: 10.1088/0957-4484/23/6/062001]
Uchihashi T, Scheuring S (2018) Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. Biochim Biophys Acta Gen Subj 1862(2):229–240 [DOI: 10.1016/j.bbagen.2017.07.010]
Ando T (2022) High-speed atomic force microscopy in biology: directly watching dynamics of biomolecules in action. Springer, Heidelberg [DOI: 10.1007/978-3-662-64785-1]
Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53(12):1045–1047 [DOI: 10.1063/1.100061]
Churnside AB, Sullan RMA, Nguyen DM et al (2012) Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy. Nano Lett 12(7):3557–3561 [DOI: 10.1021/nl301166w]
Sader JE, Chon JW, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70(10):3967–3969 [DOI: 10.1063/1.1150021]
Vorselen D, Kooreman ES, Wuite GJ et al (2016) Controlled tip wear on high roughness surfaces yields gradual broadening and rounding of cantilever tips. Sci Rep 6(1):1–7 [DOI: 10.1038/srep36972]
Heath GR, Kots E, Robertson JL et al (2021) Localization atomic force microscopy. Nature 594(7863):385–390 [DOI: 10.1038/s41586-021-03551-x]
Hölscher H, Allers W, Schwarz U et al (2000) Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy. Phys Rev B 62(11):6967 [DOI: 10.1103/PhysRevB.62.6967]
Ho H, West P (1996) Optimizing AC-mode atomic force microscope imaging. J Scan Microsc 18(5):339–343
Garcıa R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301 [DOI: 10.1016/S0167-5729(02)00077-8]
Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226 [DOI: 10.1038/nnano.2012.38]
Martínez NF, García R (2006) Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 17(7):S167 [DOI: 10.1088/0957-4484/17/7/S11]
Rodrıguez TR, Garcı́a R (2004) Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl Phys Lett 84(3):449–451 [DOI: 10.1063/1.1642273]
Martinez N, Lozano JR, Herruzo E et al (2008) Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 19(38):384011 [DOI: 10.1088/0957-4484/19/38/384011]
Martínez-Martín D, Herruzo ET, Dietz C et al (2011) Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys Rev Lett 106(19):198101 [DOI: 10.1103/PhysRevLett.106.198101]
Patil S, Martinez NF, Lozano JR et al (2007) Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J Mol Recognit 20(6):516–523 [DOI: 10.1002/jmr.848]
De Pablo P, Colchero J, Gomez-Herrero J et al (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73(22):3300–3302 [DOI: 10.1063/1.122751]
Moreno-Herrero F, Colchero J, Gomez-Herrero J et al (2004) Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Phys Rev E 69(3):031915 [DOI: 10.1103/PhysRevE.69.031915]
JPK Instruments (2011) Nanowizard 4–the next benchmark for BioAFM. JPK Instruments, Berlin
Bruker (2015) Peak-force tapping – how AFM should be. Bruker Nano Surfaces Division, Goleta
Zemła J, Danilkiewicz J, Orzechowska B et al (2018) Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol 73:115–124 [DOI: 10.1016/j.semcdb.2017.06.029]
Scholl ZN, Li Q, Josephs E et al (2019) Force spectroscopy of single protein molecules using an atomic force microscope. JoVE (144):e55989
De Pablo P, Colchero J, Gomez-Herrero J et al (1999) Adhesion maps using scanning force microscopy techniques. J Adhes 71(4):339–356 [DOI: 10.1080/00218469908014547]
Viljoen A, Mathelié-Guinlet M, Ray A et al (2021) Force spectroscopy of single cells using atomic force microscopy. Nat Rev Methods Primers 1(1):1–24 [DOI: 10.1038/s43586-021-00062-x]
Mitsui K, Hara M, Ikai A (1996) Mechanical unfolding of a2-macroglobulin molecules with atomic force microscope. FEBS Lett 385(1–2):29–33 [DOI: 10.1016/0014-5793(96)00319-5]
Rief M, Gautel M, Oesterhelt F et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112 [DOI: 10.1126/science.276.5315.1109]
Maity S, Lyubchenko YL (2019) Force clamp approach for characterization of nano-assembly in amyloid beta 42 dimer. Nanoscale 11(25):12259–12265 [DOI: 10.1039/C9NR01670H]
Mignolet J, Mathelié-Guinlet M, Viljoen A et al (2021) AFM force-clamp spectroscopy captures the nanomechanics of the Tad pilus retraction. Nanoscale Horiz 6(6):489–496 [DOI: 10.1039/D1NH00158B]
Wang Y-F, Zhang Q, Tian F et al (2022) Spatiotemporal tracing of the cellular internalization process of rod-shaped nanostructures. ACS Nano 16(3):4059–4071 [DOI: 10.1021/acsnano.1c09684]
Medalsy I, Hensen U, Muller DJ (2011) Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force–volume AFM. Angew Chem Int Ed 50(50):12103–12108 [DOI: 10.1002/anie.201103991]
Yang Y, Xiao X, Peng Y et al (2019) The comparison between force volume and peak force quantitative nanomechanical mode of atomic force microscope in detecting cell’s mechanical properties. Microsc Res Tech 82(11):1843–1851
Penedo M, Miyazawa K, Okano N et al (2021) Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. Sci Adv 7(52):eabj4990 [DOI: 10.1126/sciadv.abj4990]
Baclayon M, Wuite G, Roos W (2010) Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter 6(21):5273–5285 [DOI: 10.1039/b923992h]
Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct 25(1):395–429 [DOI: 10.1146/annurev.bb.25.060196.002143]
Farge G, Mehmedovic M, Baclayon M et al (2014) In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription. Cell Rep 8(1):66–74 [DOI: 10.1016/j.celrep.2014.05.046]
Sanchez H, Kanaar R, Wyman C (2010) Molecular recognition of DNA–protein complexes: a straightforward method combining scanning force and fluorescence microscopy. Ultramicroscopy 110(7):844–851 [DOI: 10.1016/j.ultramic.2010.03.002]
Falvo M, Washburn S, Superfine R et al (1997) Manipulation of individual viruses: friction and mechanical properties. Biophys J 72(3):1396–1403 [DOI: 10.1016/S0006-3495(97)78786-1]
van der Heijden T, Moreno-Herrero F, Kanaar R et al (2006) Comment on “Direct and real-time visualization of the disassembly of a single RecA-DNA-ATPγS complex using AFM imaging in fluid”. Nano Lett 6(12):3000–3002 [DOI: 10.1021/nl061746j]
Ando T (2018) High-speed atomic force microscopy and its future prospects. Biophys Rev 10(2):285–292 [DOI: 10.1007/s12551-017-0356-5]
Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98(22):12468–12472 [DOI: 10.1073/pnas.211400898]
Ando T, Uchihashi T, Kodera N et al (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflug Arch Eur J Physiol 456(1):211–225 [DOI: 10.1007/s00424-007-0406-0]
Kodera N, Yamamoto D, Ishikawa R et al (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468(7320):72–76 [DOI: 10.1038/nature09450]
Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83(7–9):337–437 [DOI: 10.1016/j.progsurf.2008.09.001]
Miyagi A, Scheuring S (2018) A novel phase-shift-based amplitude detector for a high-speed atomic force microscope. Rev Sci Instrum 89(8):083704 [DOI: 10.1063/1.5038095]
Yang C, Yan J, Dukic M et al (2016) Design of a high-bandwidth tripod scanner for high speed atomic force microscopy. Scanning 38(6):889–900 [DOI: 10.1002/sca.21338]
Fukuda S, Ando T (2021) Faster high-speed atomic force microscopy for imaging of biomolecular processes. Rev Sci Instrum 92(3):033705 [DOI: 10.1063/5.0032948]
Matin TR, Heath GR, Huysmans GH et al (2020) Millisecond dynamics of an unlabeled amino acid transporter. Nat Commun 11(1):1–11 [DOI: 10.1038/s41467-020-18811-z]
Perrino AP, Miyagi A, Scheuring S (2021) Single molecule kinetics of bacteriorhodopsin by HS-AFM. Nat Commun 12(1):1–10 [DOI: 10.1038/s41467-021-27580-2]
Uchihashi T, Watanabe H, Fukuda S et al (2016) Functional extension of high-speed AFM for wider biological applications. Ultramicroscopy 160:182–196 [DOI: 10.1016/j.ultramic.2015.10.017]
Valbuena A, Maity S, Mateu MG et al (2020) Visualization of single molecules building a viral capsid protein lattice through stochastic pathways. ACS Nano 14(7):8724–8734 [DOI: 10.1021/acsnano.0c03207]
Gisbert VG, Benaglia S, Uhlig MR et al (2021) High-speed nanomechanical mapping of the early stages of collagen growth by bimodal force microscopy. ACS Nano 15(1):1850–1857 [DOI: 10.1021/acsnano.0c10159]
Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47(31):7986–7998 [DOI: 10.1021/bi800753x]
Lamolle SF, Monjo M, Lyngstadaas SP et al (2009) Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance. J Biomed Mater Res A 88(3):581–588 [DOI: 10.1002/jbm.a.31898]
Larsson Wexell C, Thomsen P, Aronsson B-O et al (2013) Bone response to surface-modified titanium implants: studies on the early tissue response to implants with different surface characteristics. Int J Biomater 2013:412482 [DOI: 10.1155/2013/412482]
Kroeze R, Helder M, Roos W et al (2010) The effect of ethylene oxide, glow discharge and electron beam on the surface characteristics of poly (L-lactide-co-caprolactone) and the corresponding cellular response of adipose stem cells. Acta Biomater 6(6):2060–2065 [DOI: 10.1016/j.actbio.2009.11.022]
Alsteens D, Gaub HE, Newton R et al (2017) Atomic force microscopy-based characterization and design of biointerfaces. Nat Rev Mater 2(5):1–16 [DOI: 10.1038/natrevmats.2017.8]
Baclayon M, Pv U, Mouhib H et al (2016) Mechanical unfolding of an autotransporter passenger protein reveals the secretion starting point and processive transport intermediates. ACS Nano 10(6):5710–5719 [DOI: 10.1021/acsnano.5b07072]
Delguste M, Zeippen C, Machiels B et al (2018) Multivalent binding of herpesvirus to living cells is tightly regulated during infection. Sci Adv 4(8):eaat1273 [DOI: 10.1126/sciadv.aat1273]
Maity S, Mazzolini M, Arcangeletti M et al (2015) Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy. Nat Commun 6(1):1–16 [DOI: 10.1038/ncomms8093]
Koehler M, Lo Giudice C, Vogl P et al (2020) Control of ligand-binding specificity using photocleavable linkers in AFM force spectroscopy. Nano Lett 20(5):4038–4042 [DOI: 10.1021/acs.nanolett.0c01426]
Buzón P, Maity S, Roos WH (2020) Physical virology: from virus self-assembly to particle mechanics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12(4):e1613 [DOI: 10.1002/wnan.1613]
Mateu MG (2012) Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective. Virus Res 168(1–2):1–22 [DOI: 10.1016/j.virusres.2012.06.008]
Roos W, Bruinsma R, Wuite G (2010) Physical virology. Nat Phys 6(10):733–743 [DOI: 10.1038/nphys1797]
Vorselen D, Piontek MC, Roos WH et al (2020) Mechanical characterization of liposomes and extracellular vesicles, a protocol. Front Mol Biosci 7:139 [DOI: 10.3389/fmolb.2020.00139]
Roos WH, Gertsman I, May ER et al (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci U S A 109(7):2342–2347 [DOI: 10.1073/pnas.1109590109]
Carrasco C, Luque A, Hernando-Pérez M et al (2011) Built-in mechanical stress in viral shells. Biophys J 100(4):1100–1108 [DOI: 10.1016/j.bpj.2011.01.008]
Baclayon M, Shoemaker GK, Uetrecht C et al (2011) Prestress strengthens the shell of Norwalk virus nanoparticles. Nano Lett 11(11):4865–4869 [DOI: 10.1021/nl202699r]
Denning D, Bennett S, Mullen T et al (2019) Maturation of adenovirus primes the protein nano-shell for successful endosomal escape. Nanoscale 11(9):4015–4024 [DOI: 10.1039/C8NR10182E]
Snijder J, Ivanovska I, Baclayon M et al (2012) Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron 43(12):1343–1350 [DOI: 10.1016/j.micron.2012.04.011]
Rico F, Russek A, Gonzalez L et al (2019) Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. Proc Natl Acad Sci U S A 116(14):6594–6601 [DOI: 10.1073/pnas.1816909116]
Roos WH, Radtke K, Kniesmeijer E et al (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A 106(24):9673–9678 [DOI: 10.1073/pnas.0901514106]

MeSH Term

Microscopy, Atomic Force
Proteins
Mechanical Phenomena
Biological Science Disciplines

Chemicals

Proteins

Word Cloud

Similar Articles

Cited By