The RNA-binding protein CSDE1 promotes hematopoietic stem and progenitor cell generation via translational control of Wnt signaling.

Ying Li, Can Li, Mengyao Liu, Shicheng Liu, Feng Liu, Lu Wang
Author Information
  1. Ying Li: State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
  2. Can Li: State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
  3. Mengyao Liu: State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
  4. Shicheng Liu: State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China.
  5. Feng Liu: State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China. ORCID
  6. Lu Wang: State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China. ORCID

Abstract

In vertebrates, the earliest hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of specialized endothelial cells, hemogenic endothelial cells, in the aorta-gonad-mesonephros region through endothelial-to-hematopoietic transition. HSPC generation is efficiently and accurately regulated by a variety of factors and signals; however, the precise control of these signals remains incompletely understood. Post-transcriptional regulation is crucial for gene expression, as the transcripts are usually bound by RNA-binding proteins (RBPs) to regulate RNA metabolism. Here, we report that the RBP protein Csde1-mediated translational control is essential for HSPC generation during zebrafish early development. Genetic mutants and morphants demonstrated that depletion of csde1 impaired HSPC production in zebrafish embryos. Mechanistically, Csde1 regulates HSPC generation through modulating Wnt/β-catenin signaling activity. We demonstrate that Csde1 binds to ctnnb1 mRNAs (encoding β-catenin, an effector of Wnt signaling) and regulates translation but not stability of ctnnb1 mRNA, which further enhances β-catenin protein level and Wnt signal transduction activities. Together, we identify Csde1 as an important post-transcriptional regulator and provide new insights into how Wnt/β-catenin signaling is precisely regulated at the post-transcriptional level.

Keywords

References

  1. EMBO J. 2007 Jan 10;26(1):158-69 [PMID: 17159903]
  2. PLoS One. 2018 Aug 23;13(8):e0201690 [PMID: 30138317]
  3. Nat Rev Mol Cell Biol. 2009 Jul;10(7):468-77 [PMID: 19536106]
  4. Cell. 2009 Feb 20;136(4):731-45 [PMID: 19239892]
  5. Mol Psychiatry. 2021 Jul;26(7):3572-3585 [PMID: 33867523]
  6. Biochem Cell Biol. 2019 Feb;97(1):10-20 [PMID: 29898370]
  7. J Biol Chem. 2007 Dec 14;282(50):36265-74 [PMID: 17959601]
  8. Blood Cells Mol Dis. 2013 Dec;51(4):264-70 [PMID: 23927968]
  9. Nucleic Acids Res. 2021 Jan 8;49(D1):D1046-D1057 [PMID: 33221922]
  10. Nature. 2010 Mar 4;464(7285):112-5 [PMID: 20154732]
  11. Nat Rev Genet. 2020 Oct;21(10):630-644 [PMID: 32709985]
  12. Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2212212120 [PMID: 36745802]
  13. Trends Genet. 1996 Oct;12(10):387-9 [PMID: 8909127]
  14. J Exp Med. 2012 Jul 30;209(8):1457-68 [PMID: 22802352]
  15. Mol Cell. 2019 Sep 19;75(6):1188-1202.e11 [PMID: 31399345]
  16. Trends Cell Biol. 2018 Dec;28(12):976-986 [PMID: 29935893]
  17. Nucleic Acids Res. 2005 May 31;33(10):3095-108 [PMID: 15928332]
  18. Nat Commun. 2017 Nov 13;8(1):1456 [PMID: 29129916]
  19. Development. 2022 May 15;149(10): [PMID: 35502759]
  20. Dev Cell. 2009 Jul;17(1):9-26 [PMID: 19619488]
  21. Dev Biol. 2007 Jul 1;307(1):29-42 [PMID: 17531218]
  22. Science. 2005 Sep 2;309(5740):1514-8 [PMID: 16141059]
  23. Nucleic Acids Res. 1999 Apr 15;27(8):1926-34 [PMID: 10101203]
  24. Nature. 2007 Jun 21;447(7147):1007-11 [PMID: 17581586]
  25. Dev Biol. 2021 Jul;475:156-164 [PMID: 33689804]
  26. Genes Dev. 2004 Aug 15;18(16):2010-23 [PMID: 15314026]
  27. Nature. 2010 Mar 4;464(7285):108-11 [PMID: 20154733]
  28. Cell Res. 2023 Jun;33(6):448-463 [PMID: 37016019]
  29. Cell. 2009 Mar 20;136(6):1136-47 [PMID: 19303855]
  30. Blood. 2012 Jan 5;119(1):262-72 [PMID: 22058113]
  31. Cell Res. 2015 Oct;25(10):1093-107 [PMID: 26358189]
  32. Dev Dyn. 2007 Nov;236(11):3088-99 [PMID: 17937395]
  33. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  34. Trends Biochem Sci. 2017 May;42(5):369-382 [PMID: 28268044]
  35. Nat Genet. 2020 Feb;52(2):138-145 [PMID: 31959994]
  36. Blood. 2008 Jan 1;111(1):122-31 [PMID: 17875805]
  37. Dev Biol. 2002 Aug 15;248(2):307-18 [PMID: 12167406]
  38. J Vis Exp. 2020 Jan 28;(155): [PMID: 32065138]
  39. Nature. 2018 Jan 24;553(7689):418-426 [PMID: 29364285]
  40. J Cell Sci. 2017 May 15;130(10):1796-1808 [PMID: 28386023]
  41. Cell Res. 2018 Feb;28(2):249-252 [PMID: 29148543]
  42. J Biol Chem. 2020 Dec 4;295(49):16826-16839 [PMID: 32989053]
  43. Cell Rep. 2016 Nov 1;17(6):1595-1606 [PMID: 27806298]
  44. Nat Rev Genet. 2012 Jun;13(6):383-94 [PMID: 22568971]
  45. Cell. 2008 Feb 22;132(4):631-44 [PMID: 18295580]
  46. Sci Adv. 2019 Sep 25;5(9):eaax2166 [PMID: 31579823]
  47. Nat Biotechnol. 2014 Jun;32(6):554-61 [PMID: 24837661]
  48. Cancer Cell. 2016 Nov 14;30(5):694-707 [PMID: 27908735]
  49. Immunol Rev. 2013 May;253(1):290-303 [PMID: 23550653]
  50. RNA Biol. 2005 Jul-Sep;2(3):e27-35 [PMID: 17114922]
  51. Crit Rev Biochem Mol Biol. 2017 Aug;52(4):414-424 [PMID: 28508727]
  52. Dev Cell. 2017 Aug 21;42(4):349-362.e4 [PMID: 28803829]
  53. Nature. 2017 Sep 14;549(7671):273-276 [PMID: 28869969]
  54. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  55. Biochem Soc Trans. 2015 Jun;43(3):323-7 [PMID: 26009170]
  56. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  57. Nat Rev Immunol. 2013 May;13(5):336-48 [PMID: 23618830]
  58. Cell Rep. 2022 Jan 11;38(2):110211 [PMID: 35021076]
  59. Nature. 2010 Mar 4;464(7285):116-20 [PMID: 20154729]
  60. Mol Cell. 2003 Mar;11(3):757-71 [PMID: 12667457]
  61. Nature. 2022 Apr;604(7906):534-540 [PMID: 35418685]
  62. Nat Cell Biol. 2019 Jun;21(6):721-730 [PMID: 31110287]
  63. Circ Res. 2008 Nov 7;103(10):1147-54 [PMID: 18832752]
  64. Sci Rep. 2018 Feb 8;8(1):2628 [PMID: 29422612]
  65. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91 [PMID: 24799436]
  66. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  67. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  68. Cell Commun Signal. 2020 Jan 27;18(1):14 [PMID: 31987048]
  69. Stem Cell Reports. 2013 Jun 04;1(1):53-65 [PMID: 24052942]
  70. Mol Cell. 2009 Nov 25;36(4):571-82 [PMID: 19941818]
  71. Cell Rep. 2022 Apr 5;39(1):110587 [PMID: 35385744]
  72. Blood. 2021 Jan 14;137(2):190-202 [PMID: 32756943]
  73. Annu Rev Physiol. 2021 Feb 10;83:17-37 [PMID: 33035429]
  74. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20497-502 [PMID: 22143764]
  75. Sci Rep. 2016 Mar 03;6:22461 [PMID: 26936655]

MeSH Term

Animals
Zebrafish
beta Catenin
Wnt Signaling Pathway
Hematopoietic Stem Cells
RNA-Binding Proteins
Hemangioblasts

Chemicals

beta Catenin
RNA-Binding Proteins

Word Cloud

Similar Articles

Cited By