Comparison of Metabolites and Species Classification of Thirteen Zingiberaceae Spices Based on GC-MS and Multi-Spectral Fusion Technology.

Hui Wen, Tianmei Yang, Weize Yang, Meiquan Yang, Yuanzhong Wang, Jinyu Zhang
Author Information
  1. Hui Wen: Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
  2. Tianmei Yang: Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
  3. Weize Yang: Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
  4. Meiquan Yang: Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
  5. Yuanzhong Wang: Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China. ORCID
  6. Jinyu Zhang: Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.

Abstract

Due to a similar plant morphology in the majority of Zingiberaceae spices, substitution and adulteration frequently take place during the sales process. Therefore, it is important to analyze the metabolites and species classification of different Zingiberaceae spices. This study preliminarily explored the differences in the metabolites in thirteen Zingiberaceae spices through untargeted gas chromatography-mass spectrometry (GC-MS) and combined spectroscopy, establishing models for classifying different Zingiberaceae spices. On one hand, a total of 81 metabolites were successfully identified by GC-MS. Thirty-seven differential metabolites were screened using variable important in projection (VIP ≥ 1). However, the orthogonal partial least squares discriminant analysis (OPLS-DA) model established using GC-MS data only explained about 30% of the variation. On the other hand, the partial least squares discriminant analysis (PLS-DA) models with three spectral data fusion strategies were compared, and their classification accuracy reached 100%. Among them, the mid-level data fusion model based on latent variables had the best performance. This study provides a powerful tool for distinguishing different Zingiberaceae spices and assists in reducing the occurrence of substitution and adulteration phenomena.

Keywords

References

Phytochemistry. 2021 Oct;190:112857 [PMID: 34365295]
Phytochem Anal. 2022 Jan;33(1):136-150 [PMID: 34231268]
RSC Adv. 2021 Nov 23;11(60):37767-37783 [PMID: 35498079]
Chin Med. 2014 Mar 08;9(1):10 [PMID: 24607026]
Molecules. 2022 Jan 17;27(2): [PMID: 35056880]
J Food Prot. 2014 Oct;77(10):1740-6 [PMID: 25285491]
J Oleo Sci. 2015;64(12):1307-14 [PMID: 26582152]
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Nov 15;261:120033 [PMID: 34111837]
J Ethnopharmacol. 2018 Oct 5;224:149-168 [PMID: 29738847]
Molecules. 2022 May 04;27(9): [PMID: 35566284]
Spectrochim Acta A Mol Biomol Spectrosc. 2023 May 15;293:122450 [PMID: 36753918]
J Asian Nat Prod Res. 2021 Oct;23(10):938-954 [PMID: 33111547]
Food Funct. 2021 Nov 1;12(21):10370-10389 [PMID: 34611674]
Sci Rep. 2021 Jul 26;11(1):15200 [PMID: 34312460]
Front Plant Sci. 2022 Sep 29;13:1028735 [PMID: 36247645]
J Biosci Bioeng. 2022 May;133(5):425-435 [PMID: 35184928]
Molecules. 2019 Apr 28;24(9): [PMID: 31035329]
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020 Jan;37(1):19-38 [PMID: 31613710]
Plants (Basel). 2021 Mar 08;10(3): [PMID: 33800364]
J Pharm Biomed Anal. 2020 Jun 5;185:113215 [PMID: 32199327]
Trends Plant Sci. 2019 Jan;24(1):83-98 [PMID: 30297176]
J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Sep 1;1061-1062:364-371 [PMID: 28800540]
Am J Bot. 2002 Oct;89(10):1682-96 [PMID: 21665595]
Metabolomics. 2019 Sep 18;15(10):126 [PMID: 31535287]
J Food Sci Technol. 2022 Jan;59(1):402-408 [PMID: 35068584]
Food Chem X. 2022 Mar 16;14:100285 [PMID: 35342880]

Grants

  1. 202202AE090035/Yunnan Province's major science and technology special plan project
  2. 202104BI090011/Yunnan Provincial Innovation Guidance and Scientific and Technological Enterprise Cultivation Plan

Word Cloud

Similar Articles

Cited By