Sustainable utilization of biopolymers as green adhesive in soil improvement: a review.

Neha Raj, Subburaj Selvakumar, Balu Soundara, Ponnusamy Kulanthaivel
Author Information
  1. Neha Raj: Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, 600062, India. ORCID
  2. Subburaj Selvakumar: Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, 600062, India. selva.geotech@gmail.com. ORCID
  3. Balu Soundara: Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600025, India. ORCID
  4. Ponnusamy Kulanthaivel: Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, Tamil Nadu, 638060, India. ORCID

Abstract

Throughout history, soil improvement has relied on various additives, from ancient practices using lime and other traditional compounds to modern methods employing geosynthetics and microbial treatments. However, conventional soil admixtures, while effective, often carry significant environmental drawbacks, especially in the case of additives like cement. In response to these environmental concerns, there has been a growing interest in the use of biopolymers as a sustainable alternative for ground improvement. This literature review centers on the properties and performance of biopolymers, addressing their increasing adoption in soil enhancement endeavors. It explores the historical context of soil improvement practices, highlights the contemporary environmental challenges posed by traditional additives, and underscores the emerging trend toward biopolymers as a green adhesive solution. The review further probes into specific biopolymers, examining their characteristics and elucidating how biopolymer-treated soils achieve the desired improvements. In essence, this review provides a comprehensive understanding of the historical evolution of soil improvement practices, the current environmental imperatives, and the promising role that biopolymers play in achieving sustainable soil enhancement. It serves as a valuable resource for researchers and practitioners seeking environmentally friendly alternatives in geotechnical engineering.

Keywords

References

Acharya R, Pedarla A, Bheemasetti TV, Puppala AJ (2017) Assessment of guar gum biopolymer treatment toward mitigation of desiccation cracking on slopes built with expansive soils. Transp Res Rec 2657(1):78–88. https://doi.org/10.3141/2657-09 [DOI: 10.3141/2657-09]
Afshar A, Jahandari S, Rasekh H, Shariati M, Afshar A, Shokrgozar A (2020) Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives. Constr Build Mater 262:120034. https://doi.org/10.1016/j.conbuildmat.2020.120034 [DOI: 10.1016/j.conbuildmat.2020.120034]
Anandha Kumar S, Sujatha ER, Pugazhendi A et al (2023) Guar gum-stabilized soil: a clean, sustainable and economic alternative liner material for landfills. Clean Techn Environ Policy 25:323–341. https://doi.org/10.1007/s10098-021-02032-z [DOI: 10.1007/s10098-021-02032-z]
Arab MG, Mousa RA, Gabr AR, Azam AM, El-Badawy SM, Hassan AF (2019) Resilient behavior of sodium alginate–treated cohesive soils for pavement applications. J Mater Civ Eng 31(1):04018361. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002565 [DOI: 10.1061/(ASCE)MT.1943-5533.0002565]
Ayeldeen M, Negm A, El-Sawwaf M, Kitazume M (2017) Enhancing mechanical behaviors of collapsible soil using two biopolymers. J Rock Mech Geotech Eng 9(2):329–339. https://doi.org/10.1016/j.jrmge.2016.11.007 [DOI: 10.1016/j.jrmge.2016.11.007]
Basu D, Misra A, Puppala AJ (2015) Sustainability and geotechnical engineering: perspectives and review. Can Geotech J 52(1):96–113. https://doi.org/10.1139/cgj-2013-0120 [DOI: 10.1139/cgj-2013-0120]
Cao J, Jung J, Song X, Bate B (2018) On the soil water characteristic curves of poorly graded granular materials in aqueous polymer solutions. Acta Geotech 13:103–116. https://doi.org/10.1007/s11440-017-0568-7 [DOI: 10.1007/s11440-017-0568-7]
Castellane TC, Persona MR, Campanharo JC, de Macedo Lemos EG (2015) Production of exopolysaccharide from rhizobia with potential biotechnological and bioremediation applications. Int J Biol Macromol 74:515–522. https://doi.org/10.1016/j.ijbiomac.2015.01.007 [DOI: 10.1016/j.ijbiomac.2015.01.007]
Chang I, Cho GC (2014) Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil. Geomech Eng 7(6):633–47. https://doi.org/10.12989/gae.2014.7.6.633 [DOI: 10.12989/gae.2014.7.6.633]
Chang I, Cho GC (2019) Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay. Acta Geotech 14:361–375. https://doi.org/10.1007/s11440-018-0641-x [DOI: 10.1007/s11440-018-0641-x]
Chang I, Im J, Prasidhi AK, Cho GC (2015a) Effects of xanthan gum biopolymer on soil strengthening. Constr Build Mater 74:65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026 [DOI: 10.1016/j.conbuildmat.2014.10.026]
Chang I, Jeon M, Cho G-C (2015b) Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries. Int J Polym Sci 2015:9, Article ID 326745. https://doi.org/10.1155/2015/326745
Chang I, Prasidhi AK, Im J, Cho GC (2015c) Soil strengthening using thermo-gelation biopolymers. Constr Build Mater 77:430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116 [DOI: 10.1016/j.conbuildmat.2014.12.116]
Chang I, Prasidhi AK, Im J, Shin HD, Cho GC (2015d) Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253:39–47. https://doi.org/10.1016/j.geoderma.2015.04.006 [DOI: 10.1016/j.geoderma.2015.04.006]
Chang I, Im J, Cho GC (2016a) Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Can Geotech J 53(10):1658–1670. https://doi.org/10.1139/cgj-2015-0475 [DOI: 10.1139/cgj-2015-0475]
Chang I, Im J, Cho GC (2016b) Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 8(3):251. https://doi.org/10.3390/su8030251 [DOI: 10.3390/su8030251]
Chang I, Im J, Chung MK, Cho GC (2018) Bovine casein as a new soil strengthening binder from diary wastes. Constr Build Mater 160:1–9. https://doi.org/10.1016/j.conbuildmat.2017.11.009 [DOI: 10.1016/j.conbuildmat.2017.11.009]
Chang I, Lee M, Cho GC (2019) Global CO emission-related geotechnical engineering hazards and the mission for sustainable geotechnical engineering. Energies 12(13):2567. https://doi.org/10.3390/en12132567 [DOI: 10.3390/en12132567]
Chang I, Kwon YM, Im J, Cho GC (2019) Soil consistency and interparticle characteristics of xanthan gum biopolymer–containing soils with pore-fluid variation. Can Geotech J 56(8):1206–1213. https://doi.org/10.1139/cgj-2018-0254 [DOI: 10.1139/cgj-2018-0254]
Chang I, Lee M, Tran AT, Lee S, Kwon YM, Im J, Cho GC (2020) Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp Geotech 24:100385. https://doi.org/10.1016/j.trgeo.2020.100385 [DOI: 10.1016/j.trgeo.2020.100385]
Chen R, Ding X, Zhang L, Xie Y, Lai H (2017) Discrete element simulation of mine tailings stabilized with biopolymer. Environ Earth Sci 76:1–9. https://doi.org/10.1007/s12665-017-7118-3 [DOI: 10.1007/s12665-017-7118-3]
Cheng WC, Li G, Ong DE, Chen SL, Ni JC (2020) Modelling liner forces response to very close-proximity tunnelling in soft alluvial deposits. Tunn Undergr Space Technol 103:103455. https://doi.org/10.1016/j.tust.2020.103455 [DOI: 10.1016/j.tust.2020.103455]
Cola S, Schenato L, Brezzi L, Tchamaleu Pangop FC, Palmieri L, Bisson A (2019) Composite anchors for slope stabilisation: monitoring of their in-situ behaviour with optical fibre. Geosci J 9(5):240. https://doi.org/10.3390/geosciences9050240 [DOI: 10.3390/geosciences9050240]
Correia AG, Winter MG, Puppala AJ (2016) A review of sustainable approaches in transport infrastructure geotechnics. Transp Geotech 7:21–28. https://doi.org/10.1016/j.trgeo.2016.03.003 [DOI: 10.1016/j.trgeo.2016.03.003]
Dassanayake RS, Acharya S, Abidi N (2018) Biopolymer-based materials from polysaccharides: properties, processing, characterization and sorption applications. In:  Advanced sorption process applications. IntechOpen, London, pp 1–24. https://doi.org/10.5772/intechopen.80898
Etim RK, Eberemu AO, Osinubi KJ (2017) Stabilization of black cotton soil with lime and iron ore tailings admixture. Transp Geotech 10:85–95. https://doi.org/10.1016/j.trgeo.2017.01.002 [DOI: 10.1016/j.trgeo.2017.01.002]
Fatehi H, Abtahi SM, Hashemolhosseini H, Hejazi SM (2018) A novel study on using protein based biopolymers in soil strengthening. Constr Build Mater 167:813–821. https://doi.org/10.1016/j.conbuildmat.2018.02.028 [DOI: 10.1016/j.conbuildmat.2018.02.028]
Fatehi H, Bahmani M, Noorzad A (2019) Strengthening of dune sand with sodium alginate biopolymer. In: Eighth international conference on case histories in geotechnical engineering 2019. American Society of Civil Engineers, Reston, VA, pp 157–166. https://doi.org/10.1061/9780784482117.015
Fatehi H, Ong DE, Yu J, Chang I (2021) Biopolymers as green binders for soil improvement in geotechnical applications: a review. Geosciences 11(7):291. https://doi.org/10.3390/geosciences11070291 [DOI: 10.3390/geosciences11070291]
Ghasemzadeh H, Mehrpajouh A, Pishvaei M (2021) Laboratory analyses of kaolinite stabilized by vinyl polymers with different monomer types. Eng Geol 280:105938. https://doi.org/10.1016/j.enggeo.2020.105938 [DOI: 10.1016/j.enggeo.2020.105938]
Ham SM, Chang I, Noh DH, Kwon TH, Muhunthan B (2018) Improvement of surface erosion resistance of sand by microbial biopolymer formation. J Geotech Geoenviron 144(7):06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900 [DOI: 10.1061/(ASCE)GT.1943-5606.0001900]
Hataf N, Ghadir P, Ranjbar N (2018) Investigation of soil stabilization using chitosan biopolymer. J Clean Prod 170:1493–1500. https://doi.org/10.1016/j.jclepro.2017.09.256 [DOI: 10.1016/j.jclepro.2017.09.256]
Ibrahim S, Riahi O, Said SM, Sabri MF, Rozali S (2019). Biopolymers from Crop Plants. https://doi.org/10.1016/B978-0-12-803581-8.11573-5 [DOI: 10.1016/B978-0-12-803581-8.11573-5]
Ilman B, Balkis AP (2023) Sustainable biopolymer stabilized earthen: utilization of chitosan biopolymer on mechanical, durability, and microstructural properties. J Build Eng 76:107220. https://doi.org/10.1016/j.jobe.2023.107220 [DOI: 10.1016/j.jobe.2023.107220]
Im J, Tran AT, Chang I, Cho GC (2017) Dynamic properties of gel-type biopolymer-treated sands evaluated by resonant column (RC) tests. Geomech Eng 12(5):815–30. https://doi.org/10.12989/gae.2017.12.5.815 [DOI: 10.12989/gae.2017.12.5.815]
Jahandari S, Saberian M, Tao Z, Mojtahedi SF, Li J, Ghasemi M, Rezvani SS, Li W (2019) Effects of saturation degrees, freezing-thawing, and curing on geotechnical properties of lime and lime-cement concretes. Cold Reg Sci Technol 160:242–251. https://doi.org/10.1016/j.coldregions.2019.02.011 [DOI: 10.1016/j.coldregions.2019.02.011]
Jayasuriya AC (2017) Production of micro-and nanoscale chitosan particles for biomedical applications. Chitosan Based Biomaterials 1:185–209. https://doi.org/10.1016/B978-0-08-100230-8.00008-X [DOI: 10.1016/B978-0-08-100230-8.00008-X]
Joga JR, Varaprasad BJ (2019) Sustainable improvement of expansive clays using xanthan gum as a biopolymer. Civ Eng J 5(9):1893–903. https://doi.org/10.28991/cej-2019-03091380 [DOI: 10.28991/cej-2019-03091380]
Johny A, Shabana NM, George J, Vijay V, Mani SS (2020) Investigating the potential of biopolymers in strengthening of clayey soil. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) 17(4):01–16. https://doi.org/10.9790/1684-1704010116
Keshav N, Prabhu A, Kattimani A, Dharwad A, Kallatti C, Mahalank S (2021) Enhancing the properties of expansive soil using biopolymers—xanthan gum and guar gum. Proceedings of the Indian Geotechnical Conference Conference 2019: IGC-2019 4:129–135 [DOI: 10.1007/978-981-33-6564-3_12]
Khaleghi M, Heidarvand M (2023) A novel study on hydro-mechanical characteristics of biopolymer-stabilized dune sand. J Clean Prod 398:136518. https://doi.org/10.1016/j.jclepro.2023.136518 [DOI: 10.1016/j.jclepro.2023.136518]
Khaleghi M, Rowshanzamir MA (2019) Biologic improvement of a sandy soil using single and mixed cultures: a comparison study. Soil Tillage Res 186:112–119. https://doi.org/10.1016/j.still.2018.10.010 [DOI: 10.1016/j.still.2018.10.010]
Kim D, Park K (2017) Evaluation of the grouting in the sandy ground using bio injection material. Geomech Eng 12(5):739–52. https://doi.org/10.12989/gae.2017.12.5.739 [DOI: 10.12989/gae.2017.12.5.739]
Latifi N, Horpibulsuk S, Meehan CL, Majid MZ, Rashid AS (2016) Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat. Environ Earth Sci 75:1. https://doi.org/10.1007/s12665-016-5643-0 [DOI: 10.1007/s12665-016-5643-0]
Latifi N, Horpibulsuk S, Meehan CL, Abd Majid MZ, Tahir MM, Mohamad ET (2017) Improvement of problematic soils with biopolymer—an environmentally friendly soil stabilizer. J Mater Civ Eng 29(2):04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706 [DOI: 10.1061/(ASCE)MT.1943-5533.0001706]
Lee S, Chung M, Park HM, Song KI, Chang I (2019) Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka. J Mater Civ Eng 31(11):06019012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002909 [DOI: 10.1061/(ASCE)MT.1943-5533.0002909]
Leong HY, Ong DE, Sanjayan JG, Nazari A (2018) Strength development of soil–fly ash geopolymer: assessment of soil, fly ash, alkali activators, and water. J Mater Civ Eng 30(8):04018171. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002363 [DOI: 10.1061/(ASCE)MT.1943-5533.0002363]
Liu S, Wang R, Yu J, Peng X, Cai Y, Tu B (2020) Effectiveness of the anti-erosion of an MICP coating on the surfaces of ancient clay roof tiles. Constr Build Mater 243:118202. https://doi.org/10.1016/j.conbuildmat.2020.118202 [DOI: 10.1016/j.conbuildmat.2020.118202]
Liu Y, Chang M, Wang Q, Wang Y, Liu J, Cao C, Zheng W, Bao Y, Rocchi I (2020) Use of sulfur-free lignin as a novel soil additive: a multi-scale experimental investigation. Eng Geol 269:105551. https://doi.org/10.1016/j.enggeo.2020.105551 [DOI: 10.1016/j.enggeo.2020.105551]
Miller SA, Horvath A, Monteiro PJ (2016) Readily implementable techniques can cut annual CO emissions from the production of concrete by over 20%. Environ Res Lett 11(7):074029. https://doi.org/10.1088/1748-9326/11/7/074029 [DOI: 10.1088/1748-9326/11/7/074029]
Ngu LH, Song JW, Hashim SS, Ong DE (2019) Lab-scale atmospheric CO absorption for calcium carbonate precipitation in sand. Greenh Gases 9(3):519–528. https://doi.org/10.1002/ghg.1869 [DOI: 10.1002/ghg.1869]
Omoregie AI, Ngu LH, Ong DE, Nissom PM (2019a) Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatal Agric Biotechnol 17:247–255. https://doi.org/10.1016/j.bcab.2018.11.030 [DOI: 10.1016/j.bcab.2018.11.030]
Omoregie AI, Ong DE, Nissom PM (2019b) Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Lett Appl Microbiol 68(2):173–181. https://doi.org/10.1111/lam.13103 [DOI: 10.1111/lam.13103]
Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Procedia Manuf 12:263–279. https://doi.org/10.1016/j.promfg.2017.08.030 [DOI: 10.1016/j.promfg.2017.08.030]
Pérez IP, Pasandín AM, Pais JC, Pereira PA (2019) Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. J Clean Prod 220:87–98. https://doi.org/10.1016/j.jclepro.2019.02.082 [DOI: 10.1016/j.jclepro.2019.02.082]
Puppala AJ, Pedarla A (2017) Innovative ground improvement techniques for expansive soils. Innov Infrastruct Solut 2:1–5. https://doi.org/10.1007/s41062-017-0079-2 [DOI: 10.1007/s41062-017-0079-2]
Rahgozar MA, Saberian M, Li J (2018) Soil stabilization with non-conventional eco-friendly agricultural waste materials: an experimental study. Transp Geotech 14:52–60. https://doi.org/10.1016/j.trgeo.2017.09.004 [DOI: 10.1016/j.trgeo.2017.09.004]
Ramachandran A, Dhami NK, Mukherjee A (2019) Sustainable utilization of biopolymers and biocement in aggregation of granular materials. In: Proceedings of the Fifth International Conference on Sustainable Construction Materials and Technologies, London, pp 224822040. https://doi.org/10.18552/2019/IDSCMT5064
Rempel AW, Rempel AR (2019) Frost resilience of stabilized earth building materials. Geosci J 9(8):328. https://doi.org/10.3390/geosciences9080328 [DOI: 10.3390/geosciences9080328]
Report and – Forecast 2022: Industry ARC (2022) Biopolymers market report – forecast (2022–2027). https://www.industryarc.com/Report/11739/biopolymers-market.html . Accessed 24 Jan 2023
Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13(6):3340–3359. https://doi.org/10.3390/md13063340 [DOI: 10.3390/md13063340]
Rodgers L (2018) Climate change: The massive CO2 emitter you may not know about. BBC News 17(12):2018. https://www.bbc.com/news/science-environment-46455844 . Accessed 24 Jan 2023
Sabadini RC, Martins VC, Pawlicka A (2015) Synthesis and characterization of gellan gum: chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose 22:2045–2054. https://doi.org/10.1007/s10570-015-0590-6 [DOI: 10.1007/s10570-015-0590-6]
Saberian M, Li J, Boroujeni M, Law D, Li CQ (2020) Application of demolition wastes mixed with crushed glass and crumb rubber in pavement base/subbase. Resour Conserv Recycl 156:104722. https://doi.org/10.1016/j.resconrec.2020.104722 [DOI: 10.1016/j.resconrec.2020.104722]
Saberian M, Li J, Nguyen BT, Boroujeni M (2020) Experimental and analytical study of dynamic properties of UGM materials containing waste rubber. Soil Dyn Earthq Eng 130:105978. https://doi.org/10.1016/j.soildyn.2019.105978 [DOI: 10.1016/j.soildyn.2019.105978]
Salazar SE (2017) Development of an internal camera-based volume determination system for triaxial testing. Graduate Theses and Dissertations, University of Arkansas. Retrieved from https://scholarworks.uark.edu/etd/2563 . Accessed 24 Jan 2023
Shankar MU, Muthukumar M (2017) Comprehensive review of geosynthetic clay liner and compacted clay liner. IOP Conf Ser: Mater Sci Eng 263(3):032026. https://doi.org/10.1088/1757-899X/263/3/032026 [DOI: 10.1088/1757-899X/263/3/032026]
Smitha S, Sachan A (2016) Use of agar biopolymer to improve the shear strength behavior of sabarmati sand. J Geotech Eng 10(4):387–400. https://doi.org/10.1080/19386362.2016.1152674 [DOI: 10.1080/19386362.2016.1152674]
Soldo A, Miletić M, Auad ML (2020) Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci Rep 10(1):267. https://doi.org/10.1038/s41598-019-57135-x [DOI: 10.1038/s41598-019-57135-x]
Subramani AK, Ramani SE, Selvasembian R (2021) Understanding the microstructure, mineralogical and adsorption characteristics of guar gum blended soil as a liner material. Environ Monit Assess 193(12):855. https://doi.org/10.1007/s10661-021-09644-4 [DOI: 10.1007/s10661-021-09644-4]
Sujatha ER, Atchaya S, Sivasaran A, Keerdthe RS (2021) Enhancing the geotechnical properties of soil using xanthan gum—an eco-friendly alternative to traditional stabilizers. Bull Eng Geol Environ 80:1157–1167. https://doi.org/10.1007/s10064-020-02010-7 [DOI: 10.1007/s10064-020-02010-7]
Ta’negonbadi B, Noorzad R (2017) Stabilization of clayey soil using lignosulfonate. Transp Geotech 12:45–55. https://doi.org/10.1016/j.trgeo.2017.08.004 [DOI: 10.1016/j.trgeo.2017.08.004]
Toghroli A, Mehrabi P, Shariati M, Trung NT, Jahandari S, Rasekh H (2020) Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. Constr Build Mater 252:118997. https://doi.org/10.1016/j.conbuildmat.2020.118997 [DOI: 10.1016/j.conbuildmat.2020.118997]
Tran AT, Cho GC, Lee SJ, Chang I (2018) Effect of xanthan gum biopolymer on the water retention characteristics of unsaturated sand. In: International conference on unsaturated soil 2018. International Society for Soil Mechanics and Geotechnical Engineering.  https://csdlkhoahoc.hueuni.edu.vn/data/2019/12/1b13UNSAT2018104.pdf . Accessed 24 Jan 2023
Udayakumar GP, Muthusamy S, Selvaganesh B, Sivarajasekar N, Rambabu K, Banat F, Sivamani S, Sivakumar N, Hosseini-Bandegharaei A, Show PL (2021) Biopolymers and composites: properties, characterization and their applications in food, medical and pharmaceutical industries. J Environ Chem Eng 9(4):105322. https://doi.org/10.1016/j.jece.2021.105322 [DOI: 10.1016/j.jece.2021.105322]
Vydehi KV, Moghal AA (2022) Effect of biopolymeric stabilization on the strength and compressibility characteristics of cohesive soil. J Mater Civ Eng 34(2):04021428. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004068 [DOI: 10.1061/(ASCE)MT.1943-5533.0004068]
Wang (2019) IEA, Cement production, 2010-2018, IEA, Paris. https://www.iea.org/data-andstatistics/charts/cement-production-2010-2018 , IEA. Licence: CC BY 4.0. Accessed 24 Jan 2023
Zhang T, Liu S, Cai G, Puppala AJ (2015) Experimental investigation of thermal and mechanical properties of lignin treated silt. Eng Geol 196:1–1. https://doi.org/10.1016/j.enggeo.2015.07.003 [DOI: 10.1016/j.enggeo.2015.07.003]

MeSH Term

Biopolymers
Soil
Fertilizers
Sustainable Development

Chemicals

Biopolymers
Soil
Fertilizers

Word Cloud

Similar Articles

Cited By