Yang-Yang Lu, Chun-Yang Zhu, Yi-Xin Ding, Bing Wang, Shu-Fen Zhao, Jing Lv, Shu-Ming Chen, Sha-Sha Wang, Yan Wang, Rui Wang, Wen-Sheng Qiu, Wei-Wei Qi
Cepharanthine (CEP), a bioactive compound derived from Stephania Cephalantha Hayata, is cytotoxic to various malignancies. However, the underlying mechanism of gastric cancer is unknown. CEP inhibited the cellular activity of gastric cancer AGS, HGC27 and MFC cell lines in this study. CEP-induced apoptosis reduced Bcl-2 expression and increased cleaved caspase 3, cleaved caspase 9, Bax, and Bad expression. CEP caused a G2 cell cycle arrest and reduced cyclin D1 and cyclin-dependent kinases 2 (CDK2) expression. Meanwhile, it increased oxidative stress, decreased mitochondrial membrane potential, and enhanced reactive oxygen species (ROS) accumulation in gastric cancer cell lines. Mechanistically, CEP inhibited Kelch-like ECH-associated protein (Keap1) expression while activating NF-E2 related factor 2 (Nrf2) nuclear translocations, increasing transcription of Nrf2 target genes quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), and glutamate-cysteine ligase modifier subunit (GCLM). Furthermore, a combined analysis of targeted energy metabolism and RNA sequencing revealed that CEP could alter the levels of metabolic substances such as D (+) - Glucose, D-Fructose 6-phosphate, citric acid, succinic acid, and pyruvic acid, thereby altering energy metabolism in AGS cells. In addition, CEP significantly inhibited tumor growth in MFC BALB/c nude mice in vivo, consistent with the in vitro findings. Overall, CEP can induce oxidative stress by regulating Nrf2/Keap1 and alter energy metabolism, resulting in anti-gastric cancer effects. Our findings suggest a potential application of CEP in gastric cancer treatment.
BMC Gastroenterol. 2021 Apr 1;21(1):146
[PMID:
33794777]
Int J Biol Sci. 2021 Oct 22;17(15):4340-4352
[PMID:
34803502]
Anticancer Drugs. 2017 Jan;28(1):59-65
[PMID:
27603595]
J Neuroinflammation. 2010 Mar 06;7:16
[PMID:
20205746]
Eur J Med Chem. 2021 Nov 15;224:113690
[PMID:
34256124]
Theranostics. 2020 Apr 6;10(12):5225-5241
[PMID:
32373209]
Cancer Chemother Pharmacol. 2013 Mar;71(3):619-26
[PMID:
23228992]
J Cell Biochem. 2001;82(2):200-14
[PMID:
11527146]
Asia Pac J Clin Oncol. 2019 Aug;15(4):208-217
[PMID:
31111678]
Signal Transduct Target Ther. 2021 Mar 23;6(1):131
[PMID:
33758167]
Acta Pharmacol Sin. 2022 Jan;43(1):177-193
[PMID:
34294886]
Pharmacol Res. 2016 Dec;114:128-143
[PMID:
27794498]
Curr Oncol. 2016 Jun;23(3):e248-52
[PMID:
27330361]
J Ethnopharmacol. 2021 Mar 25;268:113566
[PMID:
33166629]
Oncology. 1997 Mar-Apr;54(2):153-7
[PMID:
9075788]
Biosci Rep. 2019 Jan 18;39(1):
[PMID:
30530866]
Br J Cancer. 2017 Nov 7;117(10):1518-1528
[PMID:
28926527]
Nat Rev Drug Discov. 2021 Sep;20(9):689-709
[PMID:
34194012]
Cell. 2011 Mar 4;144(5):646-74
[PMID:
21376230]
Expert Opin Ther Targets. 2020 Apr;24(4):389-402
[PMID:
32106726]
J BUON. 2016 Jan-Feb;21(1):125-34
[PMID:
27061540]
Chin Med J (Engl). 2020 May 5;133(9):1051-1056
[PMID:
32149769]
J Hematol Oncol. 2019 Mar 29;12(1):34
[PMID:
30925886]
Front Pharmacol. 2022 Dec 07;13:1078303
[PMID:
36569329]
Redox Biol. 2020 Jan;28:101319
[PMID:
31536951]
Nat Rev Drug Discov. 2022 Feb;21(2):141-162
[PMID:
34862480]
J Exp Clin Cancer Res. 2019 Aug 5;38(1):338
[PMID:
31382983]
Signal Transduct Target Ther. 2022 May 13;7(1):158
[PMID:
35562341]
Mol Cell. 2015 Aug 6;59(3):359-71
[PMID:
26190262]
Molecules. 2022 Dec 15;27(24):
[PMID:
36558061]
Cell Death Differ. 2022 Nov;29(11):2190-2202
[PMID:
35534546]
Arch Pharm Res. 2015 Mar;38(3):338-45
[PMID:
25599615]
Int J Cancer. 2010 Dec 15;127(12):2893-917
[PMID:
21351269]
Antioxid Redox Signal. 2018 Dec 10;29(17):1727-1745
[PMID:
28899199]
Phytomedicine. 2014 Mar 15;21(4):541-6
[PMID:
24215673]
Mol Oncol. 2020 Dec;14(12):2994-3006
[PMID:
33179413]
Pharmacol Res. 2021 Mar;165:105444
[PMID:
33493657]
Phytomedicine. 2019 Sep;62:152956
[PMID:
31132753]
Pharmacol Rep. 2020 Dec;72(6):1509-1516
[PMID:
32700247]
Oncol Rep. 2017 Oct;38(4):2558-2564
[PMID:
28791369]
Planta Med. 2019 Jan;85(1):41-47
[PMID:
30142661]
Am J Clin Exp Immunol. 2018 Jun 05;7(3):50-56
[PMID:
30038846]
iScience. 2021 Apr 23;24(4):102367
[PMID:
33817567]
Int J Oncol. 2016 Sep;49(3):1009-18
[PMID:
27571890]
J Physiol. 2021 Mar;599(6):1745-1757
[PMID:
33347611]
Gan To Kagaku Ryoho. 1991 Nov;18(14):2429-33
[PMID:
1952962]
Front Pharmacol. 2022 Sep 08;13:950109
[PMID:
36160435]
Molecules. 2023 Jun 27;28(13):
[PMID:
37446681]
J Altern Complement Med. 2012 Jul;18(7):639-40
[PMID:
22747436]
Lancet. 2020 Aug 29;396(10251):635-648
[PMID:
32861308]
Clin Transl Oncol. 2022 Jul;24(7):1219-1230
[PMID:
35038152]
Cell Biol Int. 2019 Jun;43(6):582-592
[PMID:
30958602]
PLoS Genet. 2008 Dec;4(12):e1000293
[PMID:
19057672]
Lancet. 2016 Nov 26;388(10060):2654-2664
[PMID:
27156933]
J Cell Physiol. 2019 Aug;234(8):12537-12550
[PMID:
30623450]
Pharmacol Ther. 2021 Jan;217:107659
[PMID:
32800789]
Cell Death Differ. 2015 Mar;22(3):377-88
[PMID:
25257172]
Mol Cell. 2015 Aug 20;59(4):519-21
[PMID:
26295959]
Free Radic Biol Med. 2015 Nov;88(Pt B):205-211
[PMID:
26117317]
Oncol Rep. 2022 Apr;47(4):
[PMID:
35211762]
Biochim Biophys Acta Mol Cell Res. 2021 Nov;1868(12):119132
[PMID:
34450215]
Science. 1956 Feb 24;123(3191):309-14
[PMID:
13298683]