High-quality haplotype-resolved genome assembly for ring-cup oak (Quercus glauca) provides insight into oaks demographic dynamics.

Chang-Sha Luo, Tian-Tian Li, Xiao-Long Jiang, Ying Song, Ting-Ting Fan, Xiang-Bao Shen, Rong Yi, Xiao-Ping Ao, Gang-Biao Xu, Min Deng
Author Information
  1. Chang-Sha Luo: The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China.
  2. Tian-Tian Li: The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China.
  3. Xiao-Long Jiang: The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China. ORCID
  4. Ying Song: The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China.
  5. Ting-Ting Fan: The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China.
  6. Xiang-Bao Shen: The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China.
  7. Rong Yi: The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China.
  8. Xiao-Ping Ao: The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China.
  9. Gang-Biao Xu: The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China.
  10. Min Deng: School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China.

Abstract

Quercus section Cyclobalanopsis represents a dominant woody lineage in East Asian evergreen broadleaved forests. Regardless of its ecological and economic importance, little is known about the genomes of species in this unique oak lineage. Quercus glauca is one of the most widespread tree species in the section Cyclobalanopsis. In this study, a high-quality haplotype-resolved reference genome was assembled for Q. glauca from PacBio HiFi and Hi-C reads. The genome size, contig N50, and scaffold N50 measured 902.88, 7.60, and 69.28 Mb, respectively, for haplotype1, and 913.28, 7.20, and 71.53 Mb, respectively, for haplotype2. A total of 37,457 and 38,311 protein-coding genes were predicted in haplotype1 and haplotype2, respectively. Homologous chromosomes in the Q. glauca genome had excellent gene pair collinearity. The number of R-genes in Q. glauca was similar to most East Asian oaks but less than oak species from Europe and America. Abundant structural variation in the Q. glauca genome could contribute to environmental stress tolerance in Q. glauca. Sections Cyclobalanopsis and Cerris diverged in the Oligocene, in agreement with fossil records for section Cyclobalanopsis, which document its presence in East Asia since the early Miocene. The demographic dynamics of closely related oak species were largely similar. The high-quality reference genome provided here for the most widespread species in section Cyclobalanopsis will serve as an essential genomic resource for evolutionary studies of key oak lineages while also supporting studies of interspecific introgression, local adaptation, and speciation in oaks.

Keywords

References

  1. Ai, W., Liu, Y., Mei, M., Zhang, X., Tan, E., Liu, H., Han, X., Zhan, H., & Lu, X. (2022). A chromosome-scale genome assembly of the Mongolian oak (Quercus mongolica). Molecular Ecology Resources, 22, 2396-2410. https://doi.org/10.1111/1755-0998.13616
  2. An, X., Gao, K., Chen, Z., Li, J., Yang, X., Yang, X., Zhou, J., Guo, T., Zhao, T., & Huang, S. (2022). High quality haplotype-resolved genome assemblies of Populus tomentosa Carr., a stabilized interspecific hybrid species widespread in Asia. Molecular Ecology Resources, 22(2), 786-802. https://doi.org/10.1111/1755-0998.13507
  3. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  4. Boquete, M. T., Muyle, A., & Alonso, C. (2021). Plant epigenetics: Phenotypic and functional diversity beyond the DNA sequence. American Journal of Botany, 108(4), 553-558. https://doi.org/10.1002/ajb2.1645
  5. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 1-9. https://doi.org/10.1186/1471-2105-10-421
  6. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4), 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  7. Cavender-Bares, J. (2019). Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist, 221(2), 669-692. https://doi.org/10.1111/nph.15450
  8. Césari, S., Kanzaki, H., Fujiwara, T., Bernoux, M., Chalvon, V., Kawano, Y., Shimamoto, K., Dodds, P., Terauchi, R., & Kroj, T. (2014). The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. The EMBO Journal, 33(17), 1941-1959. https://doi.org/10.15252/embj.201487923
  9. Chen, X. Y. (1994). A preliminary study on the morphological variation of seeds of Cyclobalanopsis glauca population of Huangshan. Seed, 5, 16-19. https://doi.org/10.16590/j.cnki.1001-4705.1994.05.040
  10. Chen, Y., Shen, L., & Ying, X. Y. (2007). Morphological variation of Cyclobalanopsis glauca seeds in Dajinshan Island, eastern edge of its distribution in mainland, China. Guihaia, 27(4), 555-559.
  11. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., & Li, H. (2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 18(2), 170-175. https://doi.org/10.1038/s41592-020-01056-5
  12. Comes, H. P., & Kadereit, J. W. (1998). The effect of quaternary climatic changes on plant distribution and evolution. Trends in Plant Science, 3(11), 432-438. https://doi.org/10.1016/S1360-1385(98)01327-2
  13. Cui, J. G., Cui, W. S., Deng, L. Q., & Hu, C. H. (2005). Drought-resistance of three species of deciduous oaks in western Liaoning. Journal of Liaoning Forestry Science and Technology, 1, 10-11. https://doi.org/10.3969/j.issn.1001-1714.2005.01.003
  14. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. https://doi.org/10.1093/bioinformatics/btr330
  15. Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008
  16. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3: Fast selection of best-fit models of protein evolution. Bioinformatics, 27(8), 1164-1165. https://doi.org/10.1093/bioinformatics/btr088
  17. De Bie, T., Cristianini, N., Demuth, J. P., & Hahn, M. W. (2006). CAFE: A computational tool for the study of gene family evolution. Bioinformatics, 22(10), 1269-1271. https://doi.org/10.1093/bioinformatics/btl097
  18. Deng, M. (2007). Anatomy, taxonomy, distribution & phylogeny of Quercus subg. Cyclobalanopsis (Oersted) Schneid (Fagaceae). Botany, Graduate School of Chinese Academy of Sciences.
  19. Deng, M., Jiang, X. L., Hipp, A. L., Manos, P. S., & Hahn, M. (2018). Phylogeny and biogeography of east Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Molecular Phylogenetics and Evolution, 119, 170-181. https://doi.org/10.1016/j.ympev.2017.11.003
  20. Deng, Y., Jiang, Z. C., Cao, J. H., Li, Q., & Lan, F. N. (2004). Characteristics comparison of the leaf anatomy of Cyclobalanopsis glauca and its adaption to the environment of typical karst peak cluster areas in Nongla. Guihaia, 24(4), 317-322. https://doi.org/10.3969/j.issn.1000-3142.2004.04.005
  21. Denk, T., Grimm, G. W., Manos, P. S., Deng, M., & Hipp, A. L. (2017). An updated infrageneric classification of the oaks: Review of previous taxonomic schemes and synthesis of evolutionary patterns in oaks physiological ecology. Exploring the functional diversity of genus Quercus L. In E. Gil-Pelegrín, J. J. Peguero-Pina, & D. Sancho-Knapik (Eds.), Oaks physiological ecology. Exploring the functional diversity of genus Quercus L (pp. 13-38). Springer. https://doi.org/10.1007/978-3-319-69099-5_2
  22. Doyle, J. J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19, 11-15.
  23. Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, M. S., Machol, I., Lander, E. S., Aiden, A. P., & Aiden, E. L. (2017). De novo assembly of the Aedes aegypti genome using hi-C yields chromosome-length scaffolds. Science, 356(6333), 92-95. https://doi.org/10.1126/science.aal3327
  24. Durand, N. C., Robinson, J. T., Shamim, M. S., Machol, I., Mesirov, J. P., Lander, E. S., & Aiden, E. L. (2016). Juicebox provides a visualization system for hi-C contact maps with unlimited zoom. Cell Systems, 3(1), 99-101. https://doi.org/10.1016/j.cels.2015.07.012
  25. Eduardo, B., Anna, A., Zlatko, K., Arata, M., Kathleen, B. P., Svetlana, P., José, M. P. M., Bruce, H. T., Torsten, U., & Zhou, Z. K. (2017). The fossil history of Quercus. In E. Gil-Pelegrín, J. J. Peguero-Pina, & D. Sancho-Knapik (Eds.), Oaks physiological ecology. Exploring the functional diversity of genus Quercus L (pp. 39-106). Springer. https://doi.org/10.1007/978-3-319-69099-5_3
  26. Ellinghaus, D., Kurtz, S., & Willhoeft, U. (2008). LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 9, 18. https://doi.org/10.1186/1471-2105-9-18
  27. Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1), 1-14. https://doi.org/10.1186/s13059-019-1832-y
  28. Ferrero-Serrano, Á., & Assmann, S. M. (2019). Phenotypic and genome-wide association with the local environment of Arabidopsis. Nature Ecology & Evolution, 3(2), 274-285. https://doi.org/10.1038/s41559-018-0754-5
  29. Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 39, W29-W37. https://doi.org/10.1093/nar/gkr367
  30. Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 117(17), 9451-9457. https://doi.org/10.1073/pnas.1921046117
  31. Fu, R., Zhu, Y., Liu, Y., Feng, Y., Lu, R. S., Li, Y., Li, P., Kremer, A., Lascoux, M., & Chen, J. (2022). Genome-wide analyses of introgression between two sympatric Asian oak species. Nature Ecology & Evolution, 6(7), 924-935. https://doi.org/10.1038/s41559-022-01754-7
  32. Gabler, F. M., Smilanick, J. L., Mansour, M., Ramming, D. W., & Mackey, B. E. (2003). Correlations of morphological, anatomical, and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology, 93(10), 1263-1273. https://doi.org/10.1094/phyto.2003.93.10.1263
  33. Gabur, I., Chawla, H. S., Snowdon, R. J., & Parkin, I. A. P. (2019). Connecting genome structural variation with complex traits in crop plants. Theoretical and Applied Genetics, 132(3), 733-750. https://doi.org/10.1007/s00122-018-3233-0
  34. Gil-Pelegrín, E., Peguero-Pina, J. J., & Sancho-Knapik, D. (2017). Oaks and people: A long journey together. In E. Gil-Pelegrín, J. J. Peguero-Pina, & D. Sancho-Knapik (Eds.), Oaks physiological ecology. Exploring the functional diversity of genus Quercus L (pp. 1-11). Springer International Publishing. https://doi.org/10.1007/978-3-319-69099-5_1
  35. Goel, M., Sun, H., Jiao, W. B., & Schneeberger, K. (2019). SyRI: Finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology, 20(1), 1-13. https://doi.org/10.1186/s13059-019-1911-0
  36. Gugger, P. F., Ikegami, M., & Sork, V. L. (2013). Influence of late quaternary climate change on present patterns of genetic variation in valley oak, Quercus Lobata Née. Molecular Ecology, 22(13), 3598-3612. https://doi.org/10.1111/mec.12317
  37. Guo, S. X. (1978). Pliocene flora of western Sichuan. Acta Palaeontologica Sinica, 17, 343-349.
  38. Guo, S. X. (2011). The late Miocene Bangmai flora from Lincang county of Yunnan, southwestern China. Acta Palaeontologica Sinica, 50(3), 353-408. https://doi.org/10.19800/j.cnki.aps.2011.03.008
  39. Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., White, O., Buell, C. R., & Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biology, 9(1), 1-22. https://doi.org/10.1186/gb-2008-9-1-r7
  40. Han, B., Wang, L., Xian, Y., Xie, X. M., Li, W. Q., Zhao, Y., Zhang, R. G., Qin, X., Li, D. Z., & Jia, K. H. (2022). A chromosome-level genome assembly of the Chinese cork oak (Quercus variabilis). Frontiers in Plant Science, 13, 1001583. https://doi.org/10.3389/fpls.2022.1001583
  41. He, Y., Yao, Y. P., Yao, Y. P., Jiang, Y., Liang, S. C., Li, Y. J., Liang, H. H., Zhao, Q. N., Huang, Y. B., & Ling, C. J. (2021). Interspecific and intraspecific variations of functional traits of woody species in the dominant Cyclobalanopsis glauca community in the karst area of Guilin city, Southwest China. Acta Ecologica Sinica, 41(20), 8237-8245.
  42. Hipp, A. L., Manos, P. S., Hahn, M., Avishai, M., Bodénès, C., Cavender-Bares, J., Crowl, A. A., Deng, M., Denk, T., & Fitz-Gibbon, S. (2020). Genomic landscape of the global oak phylogeny. New Phytologist, 226(4), 1198-1212. https://doi.org/10.1111/nph.16162
  43. Holt, C., & Yandell, M. (2011). MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics, 12, 491. https://doi.org/10.1186/1471-2105-12-491
  44. Hu, X., Yuan, J., Shi, Y., Lu, J., Liu, B., Li, Z., Chen, Y., Mu, D., Zhang, H., Li, N., Yue, Z., Bai, F., Li, H., & Fan, W. (2012). pIRS: Profile-based Illumina pair-end reads simulator. Bioinformatics, 28(11), 1533-1535. https://doi.org/10.1093/bioinformatics/bts187
  45. Huerta-Cepas, J., Forslund, K., Coelho, L. P., Szklarczyk, D., Jensen, L. J., von Mering, C., & Bork, P. (2017). Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution, 34(8), 2115-2122. https://doi.org/10.1093/molbev/msx148
  46. Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., von Mering, C., & Bork, P. (2019). eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1), D309-D314. https://doi.org/10.1093/nar/gky1085
  47. Jia, H., Jin, P., Wu, J., Wang, Z., & Sun, B. (2015). Quercus (subg. Cyclobalanopsis) leaf and cupule species in the late Miocene of eastern China and their paleoclimatic significance. Review of Palaeobotany and Palynology, 219, 132-146. https://doi.org/10.1016/j.revpalbo.2015.01.011
  48. Jiang, X. L., Gardner, E. M., Meng, H. H., Deng, M., & Xu, G. B. (2019). Land bridges in the Pleistocene contributed to flora assembly on the continental islands of South China: Insights from the evolutionary history of Quercus championii. Molecular Phylogenetics and Evolution, 132, 36-45. https://doi.org/10.1016/j.ympev.2018.11.021
  49. Jiang, X. L., Hipp, A. L., Deng, M., Su, T., Zhou, Z. K., & Yan, M. X. (2019). East Asian origins of European holly oaks (Quercus section ilex Loudon) via the Tibet-Himalaya. Journal of Biogeography, 46, 2203-2214. https://doi.org/10.1111/jbi.13654
  50. Jiao, Y., Leebens-Mack, J., Ayyampalayam, S., Bowers, J. E., McKain, M. R., McNeal, J., Rolf, M., Ruzicka, D. R., Wafula, E., Wickett, N. J., Wu, X., Zhang, Y., Wang, J., Zhang, Y., Carpenter, E. J., Deyholos, M. K., Kutchan, T. M., Chanderbali, A. S., Soltis, P. S., … Depamphilis, C. W. (2012). A genome triplication associated with early diversification of the core eudicots. Genome Biology, 13(1), R3. https://doi.org/10.1186/gb-2012-13-1-r3
  51. Jombart, T., & Ahmed, I. (2011). Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521
  52. Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., & Nuka, G. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. https://doi.org/10.1093/bioinformatics/btu031
  53. Kalvari, I., Nawrocki, E. P., Ontiveros-Palacios, N., Argasinska, J., Lamkiewicz, K., Marz, M., Griffiths-Jones, S., Toffano-Nioche, C., Gautheret, D., & Weinberg, Z. (2021). Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research, 49(D1), D192-D200. https://doi.org/10.1093/nar/gkaa1047
  54. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
  55. Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. https://doi.org/10.1038/nmeth.3317
  56. Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5(1), 1-9.
  57. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639-1645. https://doi.org/10.1101/gr.092759.109
  58. Leroy, T., Louvet, J. M., Lalanne, C., Le Provost, G., Labadie, K., Aury, J. M., Delzon, S., Plomion, C., & Kremer, A. (2020). Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytologist, 226(4), 1171-1182. https://doi.org/10.1111/nph.16095
  59. Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293-w296. https://doi.org/10.1093/nar/gkab301
  60. Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094-3100. https://doi.org/10.1093/bioinformatics/bty191
  61. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  62. Li, P., Quan, X., Jia, G., Xiao, J., Cloutier, S., & You, F. M. (2016). RGAugury: A pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics, 17(1), 1-10. https://doi.org/10.1186/s12864-016-3197-x
  63. Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O., & Borodovsky, M. (2005). Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Research, 33(20), 6494-6506. https://doi.org/10.1093/nar/gki937
  64. Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25(5), 955-964. https://doi.org/10.1093/nar/25.5.955
  65. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., … Wang, J. (2012). SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience, 1, 18. https://doi.org/10.1186/2047-217X-1-18
  66. Luo, Y., & Zhou, Z. (2001). Phytogeography of Quercus subg. Cyclobalanopsis. Acta Botanica Yunnanica, 23(1), 1-16. https://doi.org/10.3969/j.issn.2095-0845.2001.01.001
  67. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution, 38(10), 4647-4654. https://doi.org/10.1093/molbev/msab199
  68. Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin, A. (2018). MUMmer4: a fast and versatile genome alignment system. PLoS Computational Biology, 14(1), e1005944. https://doi.org/10.1371/journal.pcbi.1005944
  69. Mather, N., Traves, S. M., & Ho, S. Y. W. (2020). A practical introduction to sequentially Markovian coalescent methods for estimating demographic history from genomic data. Ecology and Evolution, 10, 579-589. https://doi.org/10.1002/ece3.5888
  70. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297-1303. https://doi.org/10.1101/gr.107524.110
  71. Nadachowska-Brzyska, K., Burri, R., Smeds, L., & Ellegren, H. (2016). PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Molecular Ecology, 25, 1058-1072. https://doi.org/10.1111/mec.13540
  72. Nagamitsu, T., Uchiyama, K., Izuno, A., Shimizu, H., & Nakanishi, A. (2020). Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var. crispula in northern Japan. New Phytologist, 226(4), 1018-1028. https://doi.org/10.1111/nph.16131
  73. Nawrocki, E. P., & Eddy, S. R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 29(22), 2933-2935. https://doi.org/10.1093/bioinformatics/btt509
  74. Ning, X. (2020). Study on seed germination and differences of tannin and starch content in Quercus glauca population. Central South University of Forestry & Technology.
  75. Nixon, K. C. (2006). Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests. In Ecology and conservation of Neotropical montane oak forests (pp. 3-13). Springer. https://doi.org/10.1007/3-540-28909-7_1
  76. Ou, S., Chen, J., & Jiang, N. (2018). Assessing genome assembly quality using the LTR assembly index (LAI). Nucleic Acids Research, 46(21), e126. https://doi.org/10.1093/nar/gky730
  77. Ou, S., & Jiang, N. (2018). LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiology, 176(2), 1410-1422. https://doi.org/10.1104/pp.17.01310
  78. Ou, S., Su, W., Liao, Y. I., Chougule, K., Agda, J. R. A., Hellinga, A. J., Lugo, C. S. B., Elliott, T. A., Ware, D., Peterson, T., Jiang, N., Hirsch, C. N., & Hufford, M. B. (2019). Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology, 20(1), 1-18. https://doi.org/10.1186/s13059-019-1905-y
  79. Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290-295. https://doi.org/10.1038/nbt.3122
  80. Plomion, C., Aury, J. M., Amselem, J., Leroy, T., Murat, F., Duplessis, S., Faye, S., Francillonne, N., Labadie, K., Le Provost, G., Lesur, I., Bartholomé, J., Faivre-Rampant, P., Kohler, A., Leplé, J. C., Chantret, N., Chen, J., Diévart, A., Alaeitabar, T., … Salse, J. (2018). Oak genome reveals facets of long lifespan. Nature Plants, 4(7), 440-452. https://doi.org/10.1038/s41477-018-0172-3
  81. Plomion, C., & Martin, F. (2020). Oak genomics is proving its worth. New Phytologist, 226(4), 943-946. https://doi.org/10.1111/nph.16560
  82. Price, M. N., Dehal, P. S., & Arkin, A. P. (2009). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26(7), 1641-1650. https://doi.org/10.1093/molbev/msp077
  83. Qin, Y., Zeng, Y., Jiang, G., Cen, Z., & Lan, C. (2008). Comparison study on the moisture content ability of different vegetation litterfall - A case study in karst rocky desertification region, northwest of Guangxi. Chinese Agricultural Science Bulletin, 24(8), 179-184.
  84. Qiu, Y. X., Fu, C. X., & Comes, H. P. (2011). Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of quaternary climate and environmental change in the world's most diverse temperate flora. Molecular Phylogenetics and Evolution, 59(1), 225-244. https://doi.org/10.1016/j.ympev.2011.01.012
  85. Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., & Aiden, E. L. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159(7), 1665-1680. https://doi.org/10.1016/j.cell.2014.11.021
  86. Schiffels, S., & Wang, K. (2020). MSMC and MSMC2: The multiple sequentially markovian coalescent. In J. Y. Dutheil (Ed.), Statistical population genomics (pp. 147-166). Springer US. https://doi.org/10.1007/978-1-0716-0199-0_7
  87. Serrano, M., Coluccia, F., Torres, M., L'Haridon, F., & Métraux, J. P. (2014). The cuticle and plant defense to pathogens. Frontiers in Plant Science, 5, 274. https://doi.org/10.3389/fpls.2014.00274
  88. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212. https://doi.org/10.1093/bioinformatics/btv351
  89. Slater, G. S., & Birney, E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics, 6, 31. https://doi.org/10.1186/1471-2105-6-31
  90. Sork, V. L., Cokus, S. J., Fitz-Gibbon, S. T., Zimin, A. V., Puiu, D., Garcia, J. A., Gugger, P. F., Henriquez, C. L., Zhen, Y., Lohmueller, K. E., Pellegrini, M., & Salzberg, S. L. (2022). High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Nature Communications, 13(1), 2047. https://doi.org/10.1038/s41467-022-29584-y
  91. Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  92. Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., & Morgenstern, B. (2006). AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Research, 34(suppl_2), W435-W439. https://doi.org/10.1093/nar/gkl200
  93. State Forestry Bureau of China. (2017). Reference list of China's main cultivated precious tree species. State Forestry Bureau of China.
  94. Sun, P., Jiao, B., Yang, Y., Shan, L., Li, T., Li, X., Xi, Z., Wang, X., & Liu, J. (2022). WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Molecular Plant, 15(12), 1841-1851. https://doi.org/10.1016/j.molp.2022.10.018
  95. Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 4(10), 1-4. https://doi.org/10.1002/0471250953.bi0410s25
  96. The Forestry Department of Hunan Province. (2020). Efficient cultivation techniques for major precious timber tree in Hunan. China Forestry Publishing House.
  97. Thiel, T., Michalek, W., Varshney, R. K., & Graner, A. (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 106(3), 411-422. https://doi.org/10.1007/s00122-002-1031-0
  98. Vendrami, D. L. J., De Noia, M., Telesca, L., Brodte, E. M., & Hoffman, J. I. (2020). Genome-wide insights into introgression and its consequences for genome-wide heterozygosity in the Mytilus species complex across Europe. Evolutionary Applications, 13, 2130-2142. https://doi.org/10.1111/eva.12974
  99. Wang, K., Mathieson, I., O'Connell, J., & Schiffels, S. (2020). Tracking human population structure through time from whole genome sequences. PLoS Genetics, 16(3), e1008552. https://doi.org/10.1371/journal.pgen.1008552
  100. Wang, L. F. (2015). Structural comparison of Quercus mongolica Fisch. Ex Ledeb in different ecologival environments. Northeast Normal University.
  101. Wang, M., Zhang, L., Zhang, Z., Li, M., Wang, D., Zhang, X., Xi, Z., Keefover-Ring, K., Smart, L. B., DiFazio, S. P., Olson, M. S., Yin, T., Liu, J., & Ma, T. (2020). Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. The New Phytologist, 225, 1370-1382. https://doi.org/10.1111/nph.16215
  102. Wang, W. B., He, X. F., Yan, X. M., Ma, B., Lu, C. F., Wu, J., Zheng, Y., Wang, W. H., Xue, W. B., Tian, X., Guo, J., El-Kassaby, Y. A., Porth, I., Leng, P. S., Hu, Z. H., & Mao, J. F. (2023). Chromosome-scale genome assembly and insights into the metabolome and gene regulation of leaf color transition in an important oak species, Quercus dentata. New Phytologist, 238(5), 2016-2032. https://doi.org/10.1111/nph.18814
  103. Wang, X., Kong, L., Zhi, P., & Chang, C. (2020). Update on cuticular wax biosynthesis and its roles in plant disease resistance. International Journal of Molecular Sciences, 21(15), 5514. https://doi.org/10.3390/ijms21155514
  104. Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X., Lee, T. H., Jin, H., Marler, B., Guo, H., Kissinger, J. C., & Paterson, A. H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7), e49. https://doi.org/10.1093/nar/gkr1293
  105. Writing Group of Cenozoic Plants of China. (1978). Cenozoic plants from China, fossil plants of China. Science Press Beijing.
  106. Xing, Y. W., Hu, J. J., Jacques, F. M., Wang, L., Su, T., Huang, Y. J., Liu, Y. S., & Zhou, Z. K. (2013). A new Quercus species from the upper Miocene of southwestern China and its ecological significance. Review of Palaeobotany and Palynology, 193, 99-109. https://doi.org/10.1016/j.revpalbo.2013.02.001
  107. Xu, H., Su, T., Zhang, S. T., Deng, M., & Zhou, Z. K. (2016). The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 442, 61-71. https://doi.org/10.1016/j.palaeo.2015.11.014
  108. Xu, J., Deng, M., Jiang, X. L., Westwood, M., Song, Y. G., & Turkington, R. (2015). Phylogeography of Quercus glauca (Fagaceae), a dominant tree of east Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genetics & Genomes, 11, 805. https://doi.org/10.1007/s11295-014-0805-2
  109. Xu, Z., & Wang, H. (2007). LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research, 35, W265-W268. https://doi.org/10.1093/nar/gkm286
  110. Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. https://doi.org/10.1093/molbev/msm088
  111. Zhang, R. G., Li, G. Y., Wang, X. L., Dainat, J., Wang, Z. X., Ou, S., & Ma, Y. (2022). TEsorter: An accurate and fast method to classify LTR-retrotransposons in plant genomes. Horticulture Research, 9, uhac017. https://doi.org/10.1093/hr/uhac017
  112. Zhang, Z. F., Huang, Y. Q., You, Y. M., He, C. X., Zhu, F., & Li, Y. Y. (2011). Changes of Cyclobalanopsis glauca water parameters under drought stress in karst environment. Chinese Journal of Ecology, 30(4), 664-669. https://doi.org/10.13292/j.1000-4890.2011.0114
  113. Zhou, B. F., Yuan, S., Crowl, A. A., Liang, Y. Y., Shi, Y., Chen, X. Y., An, Q. Q., Kang, M., Manos, P. S., & Wang, B. (2022). Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the northern hemisphere. Nature Communications, 13(1), 1320. https://doi.org/10.1038/s41467-022-28917-1
  114. Zhou, X., Liu, N., Jiang, X. L., Qin, Z., Farooq, T. H., Cao, F., & Li, H. (2022). A chromosome-scale genome assembly of Quercus gilva: Insights into the evolution of Quercus section Cyclobalanopsis (Fagaceae). Frontiers in Plant Science, 13, 1012277. https://doi.org/10.3389/fpls.2022.1012277

Grants

  1. CX20210882/Hunan Provincial Innovation Foundation for Postgraduate
  2. 31700174/National Natural Science Foundation of China
  3. 31972858/National Natural Science Foundation of China
  4. 2022JJ40861/Natural Science Foundation of Hunan Province
  5. 21A0158/Research Fund of Hunan Provincial Education Department

MeSH Term

Quercus
Phylogeny
Haplotypes
Forests
Demography

Word Cloud

Similar Articles

Cited By