Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).
[DOI:
10.1038/25954]
Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J. Appl. Phys. 90, 5048–5051 (2001).
[DOI:
10.1063/1.1409582]
Universal PHOLED Product Data. https://www.oled-info.com/files/UDC-Product-Sheets-sid-2011.pdf (2011).
Forrest, S. R. Organic Electronics: Foundations to Applications (Oxford Univ. Press, 2020).
Giebink, N. C. et al. Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions. J. Appl. Phys. 103, 044509 (2008).
[DOI:
10.1063/1.2884530]
Giebink, N. C., D’Andrade, B. W., Weaver, M. S., Brow, J. J. & Forrest, S. R. Direct evidence for degradation of polaron excited states in organic light emitting diodes. J. Appl. Phys. 105, 124514 (2009).
[DOI:
10.1063/1.3151689]
Jeong, C. et al. Understanding molecular fragmentation in blue phosphorescent organic light-emitting devices. Org. Electron. 64, 15–21 (2019).
[DOI:
10.1016/j.orgel.2018.10.001]
Ha, D. G. et al. Dominance of exciton lifetime in the stability of phosphorescent dyes. Adv. Opt. Mater. 7, 1901048 (2019).
[DOI:
10.1002/adom.201901048]
Dintinger, J., Klein, S., Bustos, F., Barnes, W. L. & Ebbesen, T. W. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005).
[DOI:
10.1103/PhysRevB.71.035424]
Zhang, Y., Lee, J. & Forrest, S. R. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat. Commun. 5, 5008 (2014).
[DOI:
10.1038/ncomms6008]
Lee, J. et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nat. Commun. 8, 15566 (2017).
[DOI:
10.1038/ncomms15566]
Kim, S. et al. Degradation of blue-phosphorescent organic light-emitting devices involves exciton-induced generation of polaron pair within emitting layers. Nat. Commun. 9, 1211 (2018).
[DOI:
10.1038/s41467-018-03602-4]
Bae, H. J. Protecting benzylic C–H bonds by deuteration doubles the operational lifetime of deep-blue Ir-phenylimidazole dopants in phosphorescent OLEDs. Adv. Opt. Mater. 9, 2100630 (2021).
[DOI:
10.1002/adom.202100630]
Sim, B. et al. Comprehensive model of the degradation of organic light-emitting diodes and application for efficient, stable blue phosphorescent devices with reduced influence of polarons. Phys. Rev. Appl. 14, 024002 (2020).
[DOI:
10.1103/PhysRevApplied.14.024002]
Yang, K. et al. Effects of charge dynamics in the emission layer on the operational lifetimes of blue phosphorescent organic light-emitting diodes. Adv. Funct. Mater. 32, 2108595 (2022).
[DOI:
10.1002/adfm.202108595]
Zhao, H. et al. Control of host-matrix morphology enables efficient deep-blue organic light-emitting devices. Adv. Mater. 35, 2210794 (2023).
[DOI:
10.1002/adma.202210794]
Ihn, S. G. et al. Cohosts with efficient host-to-emitter energy transfer for stable blue phosphorescent organic light-emitting diodes. J. Mater. Chem. C 9, 17412–17418 (2021).
[DOI:
10.1039/D1TC04680B]
Choi, K. H., Lee, K. H., Lee, J. Y. & Kim, T. Simultaneous achievement of high efficiency and long lifetime in deep blue phosphorescent organic light-emitting diodes. Adv. Opt. Mater. 7, 1901374 (2019).
[DOI:
10.1002/adom.201901374]
Shin, S. K., Han, S. H. & Lee, J. Y. High triplet energy exciplex host derived from a CN modified carbazole based n-type host for improved efficiency and lifetime in blue phosphorescent organic light-emitting diodes. J. Mater. Chem. C 6, 10308–10314 (2018).
[DOI:
10.1039/C8TC02918K]
Kim, J. S. et al. Improved efficiency and stability of blue phosphorescent organic light emitting diodes by enhanced orientation of homoleptic cyclometalated Ir(III) complexes. Adv. Opt. Mater. 8, 2001103 (2020).
[DOI:
10.1002/adom.202001103]
Jung, M., Lee, K. H., Lee, J. Y. & Kim, T. A bipolar host based high triplet energy electroplex for an over 10000 h lifetime in pure blue phosphorescent organic light-emitting diodes. Mater. Horiz. 7, 559–565 (2020).
[DOI:
10.1039/C9MH01268K]
Sun, J. et al. Exceptionally stable blue phosphorescent organic light-emitting diodes. Nat. Photonics 16, 212–218 (2022).
[DOI:
10.1038/s41566-022-00958-4]
Bulović, V., Khalfin, V., Gu, G., Burrows, P. & Garbuzov, D. Weak microcavity effects in organic light-emitting devices. Phys. Rev. B 58, 3730–3740 (1998).
[DOI:
10.1103/PhysRevB.58.3730]
Fusella, M. A. et al. Plasmonic enhancement of stability and brightness in organic light-emitting devices. Nature 585, 379–382 (2020).
[DOI:
10.1038/s41586-020-2684-z]
Zengin, G. et al. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett. 114, 157401 (2015).
[DOI:
10.1103/PhysRevLett.114.157401]
Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).
[DOI:
10.1103/RevModPhys.82.1489]
Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).
Togashi, K., Nomura, S., Yokoyama, N., Yasuda, T. & Adachi, C. Low driving voltage characteristics of triphenylene derivatives as electron transport materials in organic light-emitting diodes. J. Mater. Chem. 22, 20689–20695 (2012).
[DOI:
10.1039/c2jm33669c]
Kim, S. Y. et al. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv. Funct. Mater. 23, 3896–3900 (2013).
[DOI:
10.1002/adfm.201300104]
Celebi, K., Heidel, T. D. & Baldo, M. A. Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions. Opt. Express 15, 1762 (2007).
[DOI:
10.1364/OE.15.001762]
Chance, R. R., Prock, A. & Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (2007).
Hou, S., Qu, Y., Liu, X. & Forrest, S. R. Ultrastrong coupling of vibrationally dressed organic Frenkel excitons with Bloch surface waves in a one-sided all-dielectric structure. Phys. Rev. B 100, 045410 (2019).
[DOI:
10.1103/PhysRevB.100.045410]
Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003).
[DOI:
10.1002/adma.200302151]