Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review.

Sabah Mohamed Farouk, Aghareed M Tayeb, Shereen M S Abdel-Hamid, Randa M Osman
Author Information
  1. Sabah Mohamed Farouk: Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology (EA&EAT), affiliated to the Ministry of Military Production, Km. 3 Cairo Belbeis Desert Rd., Cairo Governorate, 3066, Egypt. sabahmohammed257@gmail.com. ORCID
  2. Aghareed M Tayeb: Faculty of Engineering, Minia University, Misr Aswan Agricultural Rd., EL MAHATTA, Menia Governorate, 2431384, Egypt.
  3. Shereen M S Abdel-Hamid: Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology (EA&EAT), affiliated to the Ministry of Military Production, Km. 3 Cairo Belbeis Desert Rd., Cairo Governorate, 3066, Egypt.
  4. Randa M Osman: Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), 33 El Bohouth St., Dokki, 12622, Giza Governorate, Egypt.

Abstract

Biodiesel, a renewable and sustainable alternative to fossil fuels, has garnered significant attention as a potential solution to the growing energy crisis and environmental concerns. The review commences with a thorough examination of feedstock selection and preparation, emphasizing the critical role of feedstock quality in ensuring optimal biodiesel production efficiency and quality. Next, it delves into the advancements in biodiesel applications, highlighting its versatility and potential to reduce greenhouse gas emissions and dependence on fossil fuels. The heart of the review focuses on transesterification, the key process in biodiesel production. It provides an in-depth analysis of various catalysts, including homogeneous, heterogeneous, enzyme-based, and nanomaterial catalysts, exploring their distinct characteristics and behavior during transesterification. The review also sheds light on the transesterification reaction mechanism and kinetics, emphasizing the importance of kinetic modeling in process optimization. Recent developments in biodiesel production, including feedstock selection, process optimization, and sustainability, are discussed, along with the challenges related to engine performance, emissions, and compatibility that hinder wider biodiesel adoption. The review concludes by emphasizing the need for ongoing research, development, and collaboration among academia, industry, and policymakers to address the challenges and pursue further research in biodiesel production. It outlines specific recommendations for future research, paving the way for the widespread adoption of biodiesel as a renewable energy source and fostering a cleaner and more sustainable future.

Keywords

References

Abbas Ghazali A, Marahel F (2022) Determining the characteristics of biodiesel from a mixture of crop mustard and edible waste oil using heterogeneous calcium oxide catalyst prepared from fish bones and predicting the efficiency of biodiesel using Taguchi statistical program model. J Phys Theor Chem IAU Iran 18:37–47. https://doi.org/10.30495/JPTC.2022.21451 [DOI: 10.30495/JPTC.2022.21451]
Abdel-Hamid SMS, Tharwat KM, Gad AM, Asmaa AY, Sohair TA (2023) Process optimization for biodiesel production and its effect on the performance of diesel engines. Chem Eng Technol 46:694–701. https://doi.org/10.1002/ceat.202200157 [DOI: 10.1002/ceat.202200157]
Abdulrahman RK (2017) Sustainable biodiesel production from waste cooking oil and chicken fat as an alternative fuel for diesel engine. Eur Sci J 13. https://doi.org/10.19044/esj.2016.v13n3p235
Abdulsalam H (2023) Production of biodiesel from yellow oleander (Thevetin peruviana (Pers. K Schum) seed oil. Arid Zone J Basic Appl Res 2:1–9. https://doi.org/10.55639/607.201918 [DOI: 10.55639/607.201918]
Abukhadra MR, Ibrahim SM, Yakout SM, Mohamed E (2019) Synthesis of Na+ trapped bentonite/zeolite-P composite as a novel catalyst for effective production of biodiesel from palm oil; Effect of ultrasonic irradiation and mechanism. Energy Convers Manag 196:739–750. https://doi.org/10.1016/j.enconman.2019.06.027 [DOI: 10.1016/j.enconman.2019.06.027]
Aghel B, Mohadesi M, Ansari A, Maleki M (2019) Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst. Renew Energy 142:207–214. https://doi.org/10.1016/j.renene.2019.04.100 [DOI: 10.1016/j.renene.2019.04.100]
Ahmed M, Ahmad KA, Vo DVN, Mohammed Y(2023) Recent trends in sustainable biodiesel production using heterogeneous nanocatalysts: function of supports, promoters, synthesis techniques, reaction mechanism, and kinetics and thermodynamic studies. Energy Convers Manag 280. https://doi.org/10.1016/j.enconman.2023.116821
Al Hatrooshi AS, Eze VC, Harvey AP (2020) Production of biodiesel from waste shark liver oil for biofuel applications. Renew Energy 145:99–105. https://doi.org/10.1016/j.renene.2019.06.002 [DOI: 10.1016/j.renene.2019.06.002]
Alaei S, Haghighi M, Toghiani J, Rahmani Vahid B (2018) Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: influence of fuel ratio in combustion synthesis on catalytic properties and performance. Ind Crops Prod 117:322–332. https://doi.org/10.1016/j.indcrop.2018.03.015 [DOI: 10.1016/j.indcrop.2018.03.015]
Ali A, Li B, Lu Y, Zhao C (2019) Highly selective and low-temperature hydrothermal conversion of natural oils to fatty alcohols. Green Chem 21:3059–3064. https://doi.org/10.1039/C9GC01260E [DOI: 10.1039/C9GC01260E]
Al-Mawaali S, Al-Balushi K, Souissi Y (2023) Sustainable biodiesel production from waste cooking oil and waste animal fats. In: Proceedings of the 8th World Congress on Civil, Structural, and Environmental Engineering. Avestia Publishing. https://doi.org/10.11159/iceptp23.145
Alptekin E, Canakci M, Sanli H (2014) Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag 34:2146–2154. https://doi.org/10.1016/j.wasman.2014.07.019 [DOI: 10.1016/j.wasman.2014.07.019]
Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sustain Energy Rev 90:356–369. https://doi.org/10.1016/j.rser.2018.03.069 [DOI: 10.1016/j.rser.2018.03.069]
Amini Z, Ilham Z, Ong HC, Hoora M, Wei HC (2017) State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers Manag 141:339–353. https://doi.org/10.1016/j.enconman.2016.09.049 [DOI: 10.1016/j.enconman.2016.09.049]
Amirthavalli V, Warrier AR (2019) Production of biodiesel from waste cooking oil using MgO nanocatalyst. In: AIP Conference Proceedings. American Institute of Physics Inc. https://doi.org/10.1063/1.5113448
Amruth Maroju P, Ganesan R, Ray Dutta J (2023) Biofuel generation from food waste through immobilized enzymes on magnetic nanoparticles. Mater Today Proc 72:62–66. https://doi.org/10.1016/j.matpr.2022.05.555 [DOI: 10.1016/j.matpr.2022.05.555]
Aransiola EF, Ojumu TV, Oyekola OO (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297. https://doi.org/10.1016/j.biombioe.2013.11.014 [DOI: 10.1016/j.biombioe.2013.11.014]
Arora R, Toor AP, Wanchoo RK (2015) Esterification of high free fatty acid rice bran oil: parametric and kinetic study. Chem Biochem Eng Q 29:617–623. https://doi.org/10.15255/CABEQ.2014.2117 [DOI: 10.15255/CABEQ.2014.2117]
Ashok A, Kennedy LJ, Vijaya JJ, Aruldoss U (2018) Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method. Clean Technol Environ Policy 20:1219–1231. https://doi.org/10.1007/s10098-018-1547-x [DOI: 10.1007/s10098-018-1547-x]
Atabani AE (2020) Techno-economic analysis of biodiesel production from microalgae: a review. Renew Sustain Energy Rev 124:109770. https://doi.org/10.30638/eemj.2013.191 [DOI: 10.30638/eemj.2013.191]
Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2012) The effects of water on biodiesel production and refining technologies: a review. Renew Sustain Energy Rev 16:3456–3470. https://doi.org/10.1016/j.rser.2012.03.004 [DOI: 10.1016/j.rser.2012.03.004]
Avhad MR, Marchetti JM (2015) A review on recent advancement in catalytic materials for biodiesel production. Renew Sustain Energy Rev 50:696–718. https://doi.org/10.1016/j.rser.2015.05.038 [DOI: 10.1016/j.rser.2015.05.038]
Azizian H, Kramer JKG (2005) A rapid method for the quantification of fatty acids in fats and oils with emphasis on trans fatty acids using Fourier transform near infrared spectroscopy (FT-NIR). Lipids 40:855–867. https://doi.org/10.1007/s11745-005-1448-3 [DOI: 10.1007/s11745-005-1448-3]
Balat M (2011) Potential alternatives to edible oils for biodiesel production – a review of current work. Energy Convers Manag 52:1479–1492. https://doi.org/10.1016/j.enconman.2010.10.011 [DOI: 10.1016/j.enconman.2010.10.011]
Belkhanchi H, Rouan M, Hammi M (2021) Synthesis of biodiesel by transesterification of used frying oils (Ufo) through basic homogeneous catalysts (NaOH and KOH). Biointerface Res Appl Chem 11:12858–12868. https://doi.org/10.33263/BRIAC115.1285812868 [DOI: 10.33263/BRIAC115.1285812868]
Bhatia SK, Gurav R, Choi TR (2020) Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Bioresour Technol 302. https://doi.org/10.1016/j.biortech.2020.122872
Bhuana DS, Qadariyah L, Panjaitan R, Mahfud M (2020) Optimization of biodiesel production from Chlorella sp through in-situ microwave-Assisted acid-catalyzed trans-esterification. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/732/1/012004
Booramurthy VK, Kasimani R, Subramanian D, Pandian S (2020) Production of biodiesel from tannery waste using a stable and recyclable nano-catalyst: an optimization and kinetic study. Fuel 260. https://doi.org/10.1016/j.fuel.2019.116373
Çakırca EE, Tekin GN, İlgen O, Akın AN (2019) Catalytic activity of CaO-based catalyst in transesterification of microalgae oil with methanol. Energy Environ 30:176–187. https://doi.org/10.1177/0958305X18787317 [DOI: 10.1177/0958305X18787317]
Celante D, Schenkel JVD, de Castilhos F (2018) Biodiesel production from soybean oil and dimethyl carbonate catalyzed by potassium methoxide. Fuel 212:101–107. https://doi.org/10.1016/j.fuel.2017.10.040 [DOI: 10.1016/j.fuel.2017.10.040]
Chen Y, Liu T, He H, Liang H (2018) Fe3O4/ZnMg(Al)O magnetic nanoparticles for efficient biodiesel production. Appl Organomet Chem 32:e4330. https://doi.org/10.1002/aoc.4330 [DOI: 10.1002/aoc.4330]
Choi N, No DS, Kim H (2018) In situ lipase-catalyzed transesterification in rice bran for synthesis of fatty acid methyl ester. Ind Crops Prod 120:140–146. https://doi.org/10.1016/j.indcrop.2018.04.049 [DOI: 10.1016/j.indcrop.2018.04.049]
Choksi H, Pandian S, Arumugamurthi SS (2021) Production of biodiesel from high free fatty acid feedstock using heterogeneous acid catalyst derived from palm-fruit-bunch. Energy Sources, Part a: Recovery, Util Environ Eff 43:3393–3402. https://doi.org/10.1080/15567036.2019.1623953 [DOI: 10.1080/15567036.2019.1623953]
Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520. https://doi.org/10.1016/j.apenergy.2014.01.017 [DOI: 10.1016/j.apenergy.2014.01.017]
da Costa JM, de Andrade Lima LRP (2021) Transesterification of cotton oil with ethanol for biodiesel using a KF/bentonite solid catalyst. Fuel 293. https://doi.org/10.1016/j.fuel.2021.120446
de Barros SS, Pessoa Junior WAG, Sá ISC (2020) Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresour Technol 312. https://doi.org/10.1016/j.biortech.2020.123569
Degfie TA, Mamo TT, Mekonnen YS (2019) Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst. Sci Rep 9. https://doi.org/10.1038/s41598-019-55403-4
Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34. https://doi.org/10.1016/j.enconman.2008.09.001 [DOI: 10.1016/j.enconman.2008.09.001]
Demirbas A (2008) A realistic fuel alternative for diesel engines. https://doi.org/10.1007/978-1-84628-995-8
Devaraj K, Mani Y, Rawoof SAA (2020) Feasibility of biodiesel production from waste cooking oil: lab-scale to pilot-scale analysis. Environ Sci Pollut Res 27:25828–25835. https://doi.org/10.1007/s11356-020-09068-6 [DOI: 10.1007/s11356-020-09068-6]
Dhawane SH, Kumar T, Halder G (2018) Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Convers Manag 167:176–202. https://doi.org/10.1016/j.enconman.2018.04.073 [DOI: 10.1016/j.enconman.2018.04.073]
Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 30:125–129 [DOI: 10.1016/j.molcatb.2004.04.004]
Du L, Li Z, Ding S (2019) Synthesis and characterization of carbon-based MgO catalysts for biodiesel production from castor oil. Fuel 258:116122. https://doi.org/10.1016/j.fuel.2019.116122 [DOI: 10.1016/j.fuel.2019.116122]
Elgharbawy AS, Sadik WA, Sadek OM, Kasaby MA (2021) A review on biodiesel feedstocks and production technologies. https://doi.org/10.4067/S0717-97072021000105098
Erchamo YS, Mamo TT, Workneh GA, Mekonnen YS (2021) Improved biodiesel production from waste cooking oil with mixed methanol–ethanol using enhanced eggshell-derived CaO nano-catalyst. Sci Rep 11. https://doi.org/10.1038/s41598-021-86062-z
Fattah IMR, Masjuki HH, Kalam MA (2014) Performance and emission characteristics of a CI engine fueled with Cocos nucifera and Jatropha curcas B20 blends accompanying antioxidants. Ind Crops Prod 57:132–140 [DOI: 10.1016/j.indcrop.2014.03.022]
Firdaus MY, Brask J, Nielsen PM (2016) Kinetic model of biodiesel production catalyzed by free liquid lipase from Thermomyces lanuginosus. J Mol Catal B Enzym 133:55–64 [DOI: 10.1016/j.molcatb.2016.07.011]
Firouzjaee MH, Taghizadeh M (2017) Optimization of process variables for biodiesel production using the nanomagnetic catalyst CaO/NaY-Fe3O4. Chem Eng Technol 40:1140–1148. https://doi.org/10.1002/ceat.201600406 [DOI: 10.1002/ceat.201600406]
Freedman B, Butterfield RO, Pryde EH (1986) Transesterification kinetics of soybean oil 1. J Am Oil Chem Soc 63:1375–1380 [DOI: 10.1007/BF02679606]
Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416. https://doi.org/10.1016/S1389-1723(01)80288-7 [DOI: 10.1016/S1389-1723(01)80288-7]
Garcia-Silvera EE, Melendez-Mogollon I, Pérez-Arias A, de la Rosa YA (2023) Enzymatic Biodiesel Production: Challenges and Opportunities. In: Congress on Research, Development, and Innovation in Renewable Energies: Selected Papers from CIDiER 2022. Springer, pp 19–37. https://doi.org/10.1007/978-3-031-26813-7_2
Gardy J, Nourafkan E, Osatiashtiani A (2019) A core-shell SO4/Mg-Al-Fe3O4 catalyst for biodiesel production. Appl Catal B 259:118093. https://doi.org/10.1016/j.apcatb.2019.118093 [DOI: 10.1016/j.apcatb.2019.118093]
Garg R, Sabouni R, Ahmadipour M (2023) From waste to fuel: challenging aspects in sustainable biodiesel production from lignocellulosic biomass feedstocks and role of metal organic framework as innovative heterogeneous catalysts. Ind Crops Prod 206:117554 [DOI: 10.1016/j.indcrop.2023.117554]
Ghosh N, Halder G (2022) Current progress and perspective of heterogeneous nanocatalytic transesterification towards biodiesel production from edible and inedible feedstock: a review. Energy Convers Manag 270:116292. https://doi.org/10.1016/j.enconman.2022.116292 [DOI: 10.1016/j.enconman.2022.116292]
Gog A, Roman M, Toşa M (2012) Biodiesel production using enzymatic transesterification – current state and perspectives. Renew Energy 39:10–16. https://doi.org/10.1016/j.renene.2011.08.007 [DOI: 10.1016/j.renene.2011.08.007]
Gonçalves MA, Lourenço Mares EK, da Luz PTS (2021) Biodiesel synthesis from waste cooking oil using heterogeneous acid catalyst: statistical optimization using linear regression model. J Renew Sustain Energy 13. https://doi.org/10.1063/5.0048147
Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33:1646–1653. https://doi.org/10.1016/j.energy.2008.06.002 [DOI: 10.1016/j.energy.2008.06.002]
Hamed HH, Mohammed AE, Habeeb OA (2021) Biodiesel production from waste cooking oil using homogeneous catalyst. Egypt J Chem 64:2827–2832. https://doi.org/10.21608/ejchem.2021.62395.3339 [DOI: 10.21608/ejchem.2021.62395.3339]
Haryanto A, Gita AC, Saputra TW, Telaumbanua M (2020) First order kinetics of biodiesel synthesis using used frying oil through transesterification reaction. Aceh Int J Sci Technol 9:1–11. https://doi.org/10.13170/aijst.9.1.13297 [DOI: 10.13170/aijst.9.1.13297]
Hayyan A, Alam MZ, Mirghani MES (2011) Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production. Fuel Process Technol 92:920–924 [DOI: 10.1016/j.fuproc.2010.12.011]
Hazmi B, Rashid U, Ibrahim ML (2021) Synthesis and characterization of bifunctional magnetic nano-catalyst from rice husk for production of biodiesel. Environ Technol Innov 21. https://doi.org/10.1016/j.eti.2020.101296
Helmi M, Hemmati A (2021) Synthesis of magnetically solid base catalyst of NaOH/Chitosan-Fe3O4 for biodiesel production from waste cooking oil: optimization, kinetics and thermodynamic studies. Energy Convers Manag 248. https://doi.org/10.1016/j.enconman.2021.114807
Hoekman SK, Robbins C (2012) Review of the effects of biodiesel on NOx emissions. Fuel Process Technol 96:237–249. https://doi.org/10.1016/j.fuproc.2011.12.036 [DOI: 10.1016/j.fuproc.2011.12.036]
Ibrahim ML, Nik Abdul Khalil NNA, Islam A (2020) Preparation of Na2O supported CNTs nanocatalyst for efficient biodiesel production from waste-oil. Energy Convers Manag 205:112445. https://doi.org/10.1016/j.enconman.2019.112445 [DOI: 10.1016/j.enconman.2019.112445]
Jain S, Kumar N, Singh VP (2023) Transesterification of algae oil and little amount of waste cooking oil blend at low temperature in the presence of NaOH. Energies (Basel) 16. https://doi.org/10.3390/en16031293
Jain S, Sharma MP (2010) Biodiesel production from Jatropha curcas oil. Renew Sustain Energy Rev 14:3140 [DOI: 10.1016/j.rser.2010.07.047]
Jamal Y, Rabie A, Boulanger BO (2015) Determination of methanolysis rate constants for low and high fatty acid oils using heterogeneous surface reaction kinetic models. React Kinet Mech Catal 114:63–74.  https://doi.org/10.1007/s11144-014-0780-5
Jamil F, Al-Riyami M, Al-Haj L (2021) Waste Balanites aegyptiaca seed oil as a potential source for biodiesel production in the presence of a novel mixed metallic oxide catalyst. Int J Energy Res 45:17189–17202. https://doi.org/10.1002/er.5609 [DOI: 10.1002/er.5609]
Javidialesaadi A, Raeissi S (2013) Biodiesel production from high free fatty acid-content oils: experimental investigation of the pretreatment step. APCBEE Proc 5:474–478. https://doi.org/10.1016/j.apcbee.2013.05.080 [DOI: 10.1016/j.apcbee.2013.05.080]
Jayaraman J, Alagu K, Appavu P (2020) Enzymatic production of biodiesel using lipase catalyst and testing of an unmodified compression ignition engine using its blends with diesel. Renew Energy 145:399–407. https://doi.org/10.1016/j.renene.2019.06.061 [DOI: 10.1016/j.renene.2019.06.061]
Kalavathy G, Baskar G (2019) Synergism of clay with zinc oxide as nanocatalyst for production of biodiesel from marine Ulva lactuca. Bioresour Technol 281:234–238. https://doi.org/10.1016/j.biortech.2019.02.101 [DOI: 10.1016/j.biortech.2019.02.101]
Kamel DA, Farag HA, Amin NK (2019) Utilization of Ficus carica leaves as a heterogeneous catalyst for production of biodiesel from waste cooking oil. Environ Sci Pollut Res 26:32804–32814. https://doi.org/10.1007/s11356-019-06424-z [DOI: 10.1007/s11356-019-06424-z]
Kamran E, Mashhadi H, Mohammadi A, Ghobadian B (2020) Biodiesel production from Elaeagnus angustifolia.L seed as a novel waste feedstock using potassium hydroxide catalyst. Biocatal Agric Biotechnol 25. https://doi.org/10.1016/j.bcab.2020.101578
Kang X, Guo X, You H (2015) Biodiesel development in the global scene. Energy Sources Part B 10:155–161 [DOI: 10.1080/15567249.2010.535095]
Kara K, Ouanji F, Lotfi EM (2018) Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egypt J Pet 27:249–255 [DOI: 10.1016/j.ejpe.2017.07.010]
Karmakar B, Halder G (2021) Accelerated conversion of waste cooking oil into biodiesel by injecting 2-propanol and methanol under superheated conditions: a novel approach. Energy Convers Manag 247. https://doi.org/10.1016/j.enconman.2021.114733
Karmee SK, Patria RD, Lin CSK (2015) Techno-economic evaluation of biodiesel production from waste cooking oil—a case study of Hong Kong. Int J Mol Sci 16:4362–4371. https://doi.org/10.3390/ijms16034362 [DOI: 10.3390/ijms16034362]
Kasirajan R (2021) Biodiesel production by two step process from an energy source of Chrysophyllum albidum oil using homogeneous catalyst. S Afr J Chem Eng 37:161–166. https://doi.org/10.1016/j.sajce.2021.05.011 [DOI: 10.1016/j.sajce.2021.05.011]
Kaur N, Ali A (2014) Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha crucas oil. Fuel Process Technol 119:173–184 [DOI: 10.1016/j.fuproc.2013.11.002]
Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373. https://doi.org/10.1016/j.pecs.2009.11.004 [DOI: 10.1016/j.pecs.2009.11.004]
Kumar SD (2021) Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: a critical review.  BioEnergy Res 15(2):935 961. https://doi.org/110.1007/s12155-021-10333-w
Kuniyil M, Shanmukha Kumar JV, Adil SF (2021) Production of biodiesel from waste cooking oil using ZnCuO/N-doped graphene nanocomposite as an efficient heterogeneous catalyst. Arab J Chem 14:102982. https://doi.org/10.1016/j.arabjc.2020.102982 [DOI: 10.1016/j.arabjc.2020.102982]
Laskar IB, Rokhum L, Gupta R, Chatterjee S (2020) Zinc oxide supported silver nanoparticles as a heterogeneous catalyst for production of biodiesel from palm oil. Environ Prog Sustain Energy 39. https://doi.org/10.1002/ep.13369
Lawer-Yolar G, Dawson-Andoh B, Atta-Obeng E (2021) Synthesis of biodiesel from tall oil fatty acids by homogeneous and heterogeneous catalysis. Sustain Chem 2:206–221. https://doi.org/10.3390/suschem2010012 [DOI: 10.3390/suschem2010012]
Lee SB, Lee JD, Hong IK (2011) Ultrasonic energy effect on vegetable oil based biodiesel synthetic process. J Ind Eng Chem 17:138–143. https://doi.org/10.1016/j.jiec.2010.12.012 [DOI: 10.1016/j.jiec.2010.12.012]
Li E, Xu ZP, Rudolph V (2009) MgCoAl–LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel. Appl Catal B 88:42–49 [DOI: 10.1016/j.apcatb.2008.09.022]
Li F, Jiang J, Liu P (2018) Catalytic cracking of triglycerides with a base catalyst and modification of pyrolytic oils for production of aviation fuels. Sustain Energy Fuels 2:1206–1215 [DOI: 10.1039/C7SE00505A]
Li C, Zhang A, Liu R (2020) Principle and Processing of Biodiesel Production. Industrial Oil Plant: Application Principles and Green Technologies 127–156. https://doi.org/10.1007/978-981-15-4920-5_5
Liu Y, Sotelo-Boyás R, Murata K (2011) Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni–Mo and solid acids. Energy Fuels 25:4675–4685 [DOI: 10.1021/ef200889e]
Lukić I, Kesić Ž, Maksimović S (2013) Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO· ZnO. Fuel 113:367–378 [DOI: 10.1016/j.fuel.2013.05.093]
Lukić I, Kesić Ž, Skala D (2014) Kinetics of heterogeneous biodiesel synthesis using supported ZnO as catalyst. Chem Eng Technol 37:1879–1884 [DOI: 10.1002/ceat.201300714]
Madhuranthakam CMR, Kamyabi AMN, Almheiri GM, Elkamel A (2020) Sustainable Approach for the Production of Biodiesel from Waste Cooking Oil Using Static Mixer Technology. In: Proceedings of the International Conference on Industrial Engineering and Operations Management. https://doi.org/10.46254/AN10.20200753
Makepa DC, Chihobo CH, Musademba D (2023) Techno-economic analysis and environmental impact assessment of biodiesel production from bio-oil derived from microwave-assisted pyrolysis of pine sawdust. Heliyon 9(11). https://doi.org/10.1016/j.heliyon.2023.e22261
Manzanera M, Molina-Munoz M, Gonzalez-Lopez J (2008) Biodiesel: an alternative fuel. Recent Pat Biotechnol 2:25–34. https://doi.org/10.2174/187220808783330929 [DOI: 10.2174/187220808783330929]
Marín-Suárez M, Méndez-Mateos D, Guadix A, Guadix EM (2019) Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. Renew Energy 140:1–8. https://doi.org/10.1016/j.renene.2019.03.035 [DOI: 10.1016/j.renene.2019.03.035]
Martchamadol J, Kumar S (2012) Thailand’s energy security indicators. Renew Sustain Energy Rev 16:6103–6122. https://doi.org/10.1016/j.rser.2012.06.021 [DOI: 10.1016/j.rser.2012.06.021]
Martínez A, Mijangos GE, Romero-Ibarra IC (2018) A novel green one-pot synthesis of biodiesel from Ricinus communis seeds by basic heterogeneous catalysis. J Clean Prod 196:340–349. https://doi.org/10.1016/j.jclepro.2018.05.241 [DOI: 10.1016/j.jclepro.2018.05.241]
Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248–268 [DOI: 10.1016/j.rser.2004.09.002]
Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem. 11:1285–1308. https://doi.org/10.1039/b902086a [DOI: 10.1039/b902086a]
Mobin S, Alam F, Chowdhury H (2022) Environmental impact of algae-based biofuel production: A review. AIP Conference Proceedings. AIP Publishing. 2681(1). https://doi.org/10.1063/5.0117093
Mofijur M, Masjuki HH, Kalam MA (2014) Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Ind Crops Prod 53:78–84 [DOI: 10.1016/j.indcrop.2013.12.011]
Mohamed RM, Kadry GA, Abdel-Samad HA, Awad ME (2020) High operative heterogeneous catalyst in biodiesel production from waste cooking oil. Egypt J Pet 29:59–65. https://doi.org/10.1016/j.ejpe.2019.11.002 [DOI: 10.1016/j.ejpe.2019.11.002]
Mostafa F, Hassankhani A, Rafiee H (2013) Preparation and characterization of Cs/Al/Fe3O4 nanocatalysts for biodiesel production. Energy Convers Manag 71:62–68. https://doi.org/10.1016/j.enconman.2013.03.022 [DOI: 10.1016/j.enconman.2013.03.022]
Mrad N, Varuvel EG, Tazerout M, Aloui F (2012) Effects of biofuel from fish oil industrial residue–diesel blends in diesel engine. Energy 44:955–963 [DOI: 10.1016/j.energy.2012.04.056]
Nata IF, Putra MD, Irawan C, Lee C-K (2017) Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production. J Environ Chem Eng 5:2171–2175. https://doi.org/10.1016/j.jece.2017.04.029 [DOI: 10.1016/j.jece.2017.04.029]
Naveenkumar R, Baskar G (2019) Biodiesel production from Calophyllum inophyllum oil using zinc doped calcium oxide (Plaster of Paris) nanocatalyst. Bioresour Technol 280:493–496. https://doi.org/10.1016/j.biortech.2019.02.078 [DOI: 10.1016/j.biortech.2019.02.078]
Nisa K, Salwa DAA, Hasanah A, Widayat (2020) Biodiesel production from waste cooking oil by using zirconia catalyst. In: AIP Conference Proceedings. American Institute of Physics Inc 2217(1). https://doi.org/10.1063/5.0000912
Nizami A-S, Rehan M (2018) Towards nanotechnology-based biofuel industry. Biofuel Res J 5:798–799. https://doi.org/10.18331/BRJ2018.5.2.2 [DOI: 10.18331/BRJ2018.5.2.2]
Noreen S, Sahar I, Masood N (2021) Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts. https://doi.org/10.1515/zpc-2020-1644
Oa A, Ao A, Se A (2019) Process parameter estimation of biodiesel production from waste frying oil (vegetable and palm oil) using homogeneous catalyst. J Food Process Technol 10. https://doi.org/10.35248/2157-7110.19.10.811
Oh KK, Kim YS, Yoon HH, Tae BS (2002) Pretreatment of lignocellulosic biomass using combination of ammonia recycled percolation and dilute-acid process. J Ind Eng Chem 8:64–70
Olubunmi BE, Karmakar B, Aderemi OM (2020) Parametric optimization by Taguchi L9 approach towards biodiesel production from restaurant waste oil using Fe-supported anthill catalyst. J Environ Chem Eng 8. https://doi.org/10.1016/j.jece.2020.104288
Ong HC, Masjuki HH, Mahlia TMI (2014) Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 69:427–445. https://doi.org/10.1016/j.energy.2014.03.035 [DOI: 10.1016/j.energy.2014.03.035]
Oyekunle DT, Barasa M, Gendy EA, Tiong SK (2023) Heterogeneous catalytic transesterification for biodiesel production: Feedstock properties, catalysts and process parameters. Process Saf Environ Prot 177(11). https://doi.org/10.1016/j.psep.2023.07.064
Pandit C, Banerjee S, Pandit S (2023) Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production. Heliyon 9.9(4). https://doi.org/10.1016/j.heliyon.2023.e15475
Perumal G, Mahendradas DK (2022) Biodiesel production from Bauhinia variegata seeds oil using homogeneous catalyst. Pet Sci Technol 40:857–870. https://doi.org/10.1080/10916466.2021.2008968 [DOI: 10.1080/10916466.2021.2008968]
Portha J-F, Allain F, Coupard V (2012) Simulation and kinetic study of transesterification of triolein to biodiesel using modular reactors. Chem Eng J 207:285–298 [DOI: 10.1016/j.cej.2012.06.106]
Qiu F, Li Y, Yang D (2011) Heterogeneous solid base nanocatalyst: Preparation, characterization and application in biodiesel production. Bioresour Technol 102:4150–4156. https://doi.org/10.1016/j.biortech.2010.12.071 [DOI: 10.1016/j.biortech.2010.12.071]
Quirino MR, Oliveira MJC, Keyson D (2016) Synthesis of zinc aluminate with high surface area by microwave hydrothermal method applied in the transesterification of soybean oil (biodiesel). Mater Res Bull 74:124–128. https://doi.org/10.1016/j.materresbull.2015.10.027 [DOI: 10.1016/j.materresbull.2015.10.027]
Rahimi T, Kahrizi D, Feyzi M, et al (2021) Catalytic performance of MgO /Fe2O3-SiO2 core-shell magnetic nanocatalyst for biodiesel production of Camelina sativa seed oil: optimization by RSM-CCD method. Ind Crops Prod 159. https://doi.org/10.1016/j.indcrop.2020.113065
Rai M, dos Santos JC, Soler MF (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. https://doi.org/10.1515/ntrev-2015-0069
Rajkumari K, Rokhum L (2020) A sustainable protocol for production of biodiesel by transesterification of soybean oil using banana trunk ash as a heterogeneous catalyst. Biomass Convers Biorefin 10:839–848. https://doi.org/10.1007/s13399-020-00647-8 [DOI: 10.1007/s13399-020-00647-8]
Rashid U, Ahmad J, Ibrahim ML (2019) Single-pot synthesis of biodiesel using efficient sulfonated-derived tea waste-heterogeneous catalyst. Materials 12. https://doi.org/10.3390/ma12142293
Rayati M, Rajabi Islami H, Shamsaie Mehrgan M (2020) Light intensity improves growth, lipid productivity, and fatty acid profile of Chlorococcum oleofaciens (Chlorophyceae) for biodiesel production. Bioenergy Res 13:1235–1245 [DOI: 10.1007/s12155-020-10144-5]
Rizwanul Fattah IM, Ong HC, Mahlia TMI (2020) State of the art of catalysts for biodiesel production. Front Energy Res 8. https://doi.org/10.3389/fenrg.2020.00101
Roy T, Ágarwal AK, Sharma YC (2021) A cleaner route of biodiesel production from waste frying oil using novel potassium tin oxide catalyst: a smart liquid-waste management. Waste Manag 135:243–255. https://doi.org/10.1016/j.wasman.2021.08.046 [DOI: 10.1016/j.wasman.2021.08.046]
Ruhul AM, Kalam MA, Masjuki HH et al (2015) State of the art of biodiesel production processes: a review of the heterogeneous catalyst. RSC Adv 5:101023–101044. https://doi.org/10.1039/C5RA09862A [DOI: 10.1039/C5RA09862A]
Sadaf S, Iqbal J, Ullah I et al (2018) Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustain Cities Soc 41:220–226. https://doi.org/10.1016/j.scs.2018.05.037 [DOI: 10.1016/j.scs.2018.05.037]
Saeed A, Hanif MA, Hanif A, et al (2021) Production of biodiesel from spirogyra elongata, a common freshwater green algae with high oil content. Sustainability (Switzerland) 13. https://doi.org/10.3390/su132212737
Sahani S, Roy T, Sharma YC (2020) Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: optimization and E-metrics studies. Waste Manag 108:189–201. https://doi.org/10.1016/j.wasman.2020.04.036 [DOI: 10.1016/j.wasman.2020.04.036]
Sahani S, Roy T, Chandra Sharma Y (2019) Clean and efficient production of biodiesel using barium cerate as a heterogeneous catalyst for the biodiesel production; kinetics and thermodynamic study. J Clean Prod 237. https://doi.org/10.1016/j.jclepro.2019.117699
Sait HH, Hussain A, Bassyouni M, Ali I, Kanthasamy R, Ayodele BV, Elhenawy Y (2022) Hydrogen-rich syngas and biochar production by non-catalytic valorization of date palm seeds. Energies 15(8):2727 [DOI: 10.3390/en15082727]
Salinas D, Araya P, Guerrero S (2012) Study of potassium-supported TiO2 catalysts for the production of biodiesel. Appl Catal B 117–118:260–267. https://doi.org/10.1016/j.apcatb.2012.01.016 [DOI: 10.1016/j.apcatb.2012.01.016]
Sayed A, El-Gharbawy AA (2016) Production of biodiesel from non edible vegetable oil
Seffati K, Honarvar B, Esmaeili H, Esfandiari N (2019) Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel 235:1238–1244. https://doi.org/10.1016/j.fuel.2018.08.118 [DOI: 10.1016/j.fuel.2018.08.118]
Sharma YC, Singh B (2009) Development of biodiesel: current scenario. Renew Sustain Energy Rev 13:1646–1651. https://doi.org/10.1016/j.rser.2008.08.009 [DOI: 10.1016/j.rser.2008.08.009]
Siddiqua S (2015) Transesterification of palm oil to biodiesel and optimization of production conditions i.e. methanol, sodium hydroxide and temperature. J Energy Nat Resour 4:45. https://doi.org/10.11648/j.jenr.20150403.12 [DOI: 10.11648/j.jenr.20150403.12]
Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14:200–216. https://doi.org/10.1016/j.rser.2009.07.017 [DOI: 10.1016/j.rser.2009.07.017]
Singh A, Choudhary AK, Sinha S (2023) Analysis of vibrations in a diesel engine produced by Jatropha biodiesel using heterogeneous catalyst. Energy Environ 34:407–428. https://doi.org/10.1177/0958305X211063935 [DOI: 10.1177/0958305X211063935]
Singh A, Hoque ME, Chuan YL (2011) Biodiesel from low cost feedstocks: The effects of process parameters on the biodiesel yield. Biomass and Bioenergy 35(4):1582–1587. https://doi.org/10.1016/j.biombioe.2010.12.024 [DOI: 10.1016/j.biombioe.2010.12.024]
Sousa LL, Lucena IL, Fernandes FAN (2010) Transesterification of castor oil: effect of the acid value and neutralization of the oil with glycerol. Fuel Process Technol 91:194–196. https://doi.org/10.1016/J.FUPROC.2009.09.016 [DOI: 10.1016/J.FUPROC.2009.09.016]
Srivastava N, Srivastava M, Gupta VK (2018) Recent development on sustainable biodiesel production using sewage sludge. 3 Biotech 8:1–11. https://doi.org/10.1007/s13205-018-1264-5 [DOI: 10.1007/s13205-018-1264-5]
Stamenković OS, Veljković VB, Todorović ZB (2010) Modeling the kinetics of calcium hydroxide catalyzed methanolysis of sunflower oil. Bioresour Technol 101:4423–4430. https://doi.org/10.1016/j.biortech.2010.01.109 [DOI: 10.1016/j.biortech.2010.01.109]
Suzihaque MUH, Alwi H, Kalthum Ibrahim U (2022) Biodiesel production from waste cooking oil: a brief review. Mater Today Proc 63:S490–S495. https://doi.org/10.1016/j.matpr.2022.04.527 [DOI: 10.1016/j.matpr.2022.04.527]
Tacias-Pascacio VG, Torrestiana-Sánchez B, Dal Magro L (2019) Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. Renew Energy 135:1–9. https://doi.org/10.1016/j.renene.2018.11.107 [DOI: 10.1016/j.renene.2018.11.107]
Takase M, Kipkoech R, Miller DL, Buami EK (2023) Optimisation of the reaction conditions for biodiesel from Parkia biglobosa oil via transesterification with heterogeneous clay base catalyst. Fuel Commun 15:100089. https://doi.org/10.1016/j.jfueco.2023.100089 [DOI: 10.1016/j.jfueco.2023.100089]
Talebian-Kiakalaieh A, Amin NAS, Zarei A, Noshadi I (2013) Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: optimization and kinetic model. Appl Energy 102:283–292. https://doi.org/10.1016/j.apenergy.2012.07.018 [DOI: 10.1016/j.apenergy.2012.07.018]
Tasić MB (2020) Techno-economic analysis of biodiesel production from waste cooking oil. Environ Sci Pollut Res 27:4183–4192. https://doi.org/10.1007/s41247-018-0050-7 [DOI: 10.1007/s41247-018-0050-7]
Tasić MB, Miladinović MR, Stamenković OS (2015) Kinetic modeling of sunflower oil methanolysis catalyzed by calcium-based catalysts. Chem Eng Technol 38:1550–1556. https://doi.org/10.1002/ceat.201500076 [DOI: 10.1002/ceat.201500076]
Tayeb AM, Abdel-Hamid SMS, Osman RM, Farouk SM (2023) Optimization of biodiesel production from waste cooking oil using nano calcium oxide catalyst. Chem Eng Technol. https://doi.org/10.1002/ceat.202300238 [DOI: 10.1002/ceat.202300238]
Thangaraj B, Solomon PR, Muniyandi B (2019) Catalysis in biodiesel production—a review. Clean Energy 3:2–23. https://doi.org/10.1093/ce/zky020 [DOI: 10.1093/ce/zky020]
Todorović ZB, Troter DZ, Đokić-Stojanović DR (2019) Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent. Fuel 237:903–910. https://doi.org/10.1016/j.fuel.2018.10.056 [DOI: 10.1016/j.fuel.2018.10.056]
Touqeer T, Mumtaz MW, Mukhtar H (2020) Fe3O4-PDA-lipase as surface functionalized nano biocatalyst for the production of biodiesel using waste cooking oil as feedstock: characterization and process optimization. Energies (Basel) 13. https://doi.org/10.3390/en13010177
Trejo-Zárraga F, de Jesús Hernández-Loyo F, Chavarría-Hernández JC, Sotelo-Boyás R (2018) Kinetics of transesterification processes for biodiesel production. Biofuels-State Dev 149–179. https://doi.org/10.5772/intechopen.75927
Tripathi G, Dubey P, Yadav P (2023) Advancement in biodiesel production methodologies using different feedstock. In: Wastewater Resource Recovery and Biological Methods. Springer, pp 323–341. https://doi.org/10.1007/978-3-031-40198-5_15
Um B-H, Kim Y-S (2009) Review: A chance for Korea to advance algal-biodiesel technology. J Ind Eng Chem 15:1–7. https://doi.org/10.1016/j.jiec.2008.08.002 [DOI: 10.1016/j.jiec.2008.08.002]
Veljković VB, Stamenković OS, Todorović ZB (2009) Kinetics of sunflower oil methanolysis catalyzed by calcium oxide. Fuel 88:1554–1562. https://doi.org/10.1016/j.fuel.2009.02.013 [DOI: 10.1016/j.fuel.2009.02.013]
Veza I, Zainuddin Z, Tamaldin N (2022) Effect of palm oil biodiesel blends (B10 and B20) on physical and mechanical properties of nitrile rubber elastomer. Results Eng 16:100787. https://doi.org/10.1016/j.rineng.2022.100787 [DOI: 10.1016/j.rineng.2022.100787]
Wu H, Zhang J, Wei Q (2013) Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts. Fuel Process Technol 109:13–18. https://doi.org/10.1016/j.fuproc.2012.09.032 [DOI: 10.1016/j.fuproc.2012.09.032]
Xie W, Wang J (2014) Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy Fuels 28:2624–2631. https://doi.org/10.1021/ef500131s [DOI: 10.1021/ef500131s]
Zhang Y (2021) techno-economic analysis of biodiesel production from different feedstocks. Energy Convers Manag 235:113948. https://doi.org/10.3390/en14051473 [DOI: 10.3390/en14051473]

MeSH Term

Biofuels
Esterification
Catalysis
Fossil Fuels
Industry

Chemicals

Biofuels
Fossil Fuels

Word Cloud

Similar Articles

Cited By