Cancer Brachytherapy at the Nanoscale: An Emerging Paradigm.

Sanchita Ghosh, Sophia J Lee, Jessica C Hsu, Sudipta Chakraborty, Rubel Chakravarty, Weibo Cai
Author Information
  1. Sanchita Ghosh: Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
  2. Sophia J Lee: Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.
  3. Jessica C Hsu: Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.
  4. Sudipta Chakraborty: Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India. ORCID
  5. Rubel Chakravarty: Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India. ORCID
  6. Weibo Cai: Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States. ORCID

Abstract

Brachytherapy is an established treatment modality that has been globally utilized for the therapy of malignant solid tumors. However, classic therapeutic sealed sources used in brachytherapy must be surgically implanted directly into the tumor site and removed after the requisite period of treatment. In order to avoid the trauma involved in the surgical procedures and prevent undesirable radioactive distribution at the cancerous site, well-dispersed radiolabeled nanomaterials are now being explored for brachytherapy applications. This emerging field has been coined "nanoscale brachytherapy". Despite present-day advancements, an ongoing challenge is obtaining an advanced, functional nanomaterial that concurrently incorporates features of high radiolabeling yield, short labeling time, good radiolabeling stability, and long tumor retention time without leakage of radioactivity to the nontargeted organs. Further, attachment of suitable targeting ligands to the nanoplatforms would widen the nanoscale brachytherapy approach to tumors expressing various phenotypes. Molecular imaging using radiolabeled nanoplatforms enables noninvasive visualization of cellular functions and biological processes . imaging also aids in visualizing the localization and retention of the radiolabeled nanoplatforms at the tumor site for the requisite time period to render safe and effective therapy. Herein, we review the advancements over the last several years in the synthesis and use of functionalized radiolabeled nanoplatforms as a noninvasive substitute to standard brachytherapy sources. The limitations of present-day brachytherapy sealed sources are analyzed, while highlighting the advantages of using radiolabeled nanoparticles (NPs) for this purpose. The recent progress in the development of different radiolabeling methods, delivery techniques and nanoparticle internalization mechanisms are discussed. The preclinical studies performed to date are summarized with an emphasis on the current challenges toward the future translation of nanoscale brachytherapy in routine clinical practices.

References

Theranostics. 2017 Jan 12;7(3):614-623 [PMID: 28255354]
Lancet Oncol. 2017 Feb;18(2):259-268 [PMID: 28094198]
Eur J Nucl Med Mol Imaging. 2023 Jun;50(7):1844-1847 [PMID: 36862207]
Analyst. 2012 Nov 7;137(21):4902-6 [PMID: 22957337]
J Biomech. 2008 Jul 19;41(10):2312-8 [PMID: 18571181]
J Nucl Med. 2008 Apr;49(4):541-5 [PMID: 18344427]
Adv Healthc Mater. 2017 Feb;6(4): [PMID: 28116855]
Anticancer Agents Med Chem. 2017;17(3):333-354 [PMID: 26899184]
Nanomaterials (Basel). 2019 Apr 18;9(4): [PMID: 31003512]
Pharmaceutics. 2020 Feb 21;12(2): [PMID: 32098286]
Nucl Med Biol. 2016 Dec;43(12):818-826 [PMID: 27788375]
Inorg Chem. 2014 Oct 6;53(19):10412-31 [PMID: 25192223]
ACS Nano. 2018 Aug 28;12(8):7771-7790 [PMID: 30085651]
J Nanobiotechnology. 2021 Jul 28;19(1):223 [PMID: 34320997]
Nanomedicine. 2010 Apr;6(2):201-9 [PMID: 19914401]
Sci Rep. 2022 Aug 11;12(1):13650 [PMID: 35953516]
Ann Nucl Med. 2020 Dec;34(12):899-910 [PMID: 33048309]
Can Fam Physician. 2021 Oct;67(10):753-757 [PMID: 34649900]
Bioconjug Chem. 2016 Dec 21;27(12):2791-2807 [PMID: 27787983]
Chem Rev. 2010 May 12;110(5):2858-902 [PMID: 20415480]
Magn Reson Imaging. 1989 Nov-Dec;7(6):619-27 [PMID: 2630844]
Acc Chem Res. 2015 Feb 17;48(2):286-94 [PMID: 25635467]
Nat Rev Mol Cell Biol. 2018 May;19(5):313-326 [PMID: 29410531]
Materials (Basel). 2021 Aug 24;14(17): [PMID: 34500873]
J Nucl Med. 2018 Jun;59(6):878-884 [PMID: 29545378]
Am J Clin Oncol. 2018 Jul;41(7):716-721 [PMID: 27906723]
Nucl Med Biol. 2019 May - Jun;72-73:1-10 [PMID: 31255874]
EJNMMI Res. 2020 Jun 30;10(1):73 [PMID: 32607918]
Eur J Nucl Med Mol Imaging. 2006 Nov;33(11):1352-63 [PMID: 16896663]
ACS Nano. 2013 Apr 23;7(4):3498-505 [PMID: 23473535]
CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
Traffic. 2009 Apr;10(4):364-71 [PMID: 19192253]
Curr Drug Targets. 2015;16(6):610-24 [PMID: 26148988]
J Phys Condens Matter. 2012 Apr 25;24(16):164207 [PMID: 22466161]
ACS Sens. 2022 Oct 28;7(10):2857-2864 [PMID: 36190830]
Brachytherapy. 2021 Sep-Oct;20(5):950-955 [PMID: 32888853]
Int J Nanomedicine. 2014 Oct 28;9:5001-11 [PMID: 25378926]
EJNMMI Radiopharm Chem. 2019 Oct 11;4(1):27 [PMID: 31659527]
Am J Nucl Med Mol Imaging. 2022 Oct 15;12(5):143-151 [PMID: 36419586]
Adv Drug Deliv Rev. 2019 Mar 15;143:68-96 [PMID: 31022434]
Anal Chem. 2015 Jan 6;87(1):200-15 [PMID: 25375954]
Adv Healthc Mater. 2021 May;10(10):e2002009 [PMID: 33763995]
Nanomedicine. 2008 Mar;4(1):57-69 [PMID: 18249156]
Mol Ther. 2011 Jan;19(1):93-102 [PMID: 20959809]
Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13319-23 [PMID: 24166933]
Nat Rev Urol. 2017 Jun 30;14(7):415-439 [PMID: 28664931]
Mol Pharm. 2016 Nov 7;13(11):3601-3612 [PMID: 27709959]
J Clin Invest. 1998 Apr 1;101(7):1401-13 [PMID: 9525983]
Chem Rev. 2010 May 12;110(5):3019-42 [PMID: 20415475]
Rep Pract Oncol Radiother. 2019 May-Jun;24(3):288-293 [PMID: 31031569]
J Control Release. 2022 Mar;343:267-276 [PMID: 35077742]
Am J Nucl Med Mol Imaging. 2021 Dec 15;11(6):443-475 [PMID: 35003885]
Eur J Radiol Open. 2023 Jan 31;10:100477 [PMID: 36785643]
ACS Biomater Sci Eng. 2020 Jun 8;6(6):3299-3309 [PMID: 33463164]
Int J Pharm. 2020 Sep 25;587:119628 [PMID: 32681867]
EJNMMI Radiopharm Chem. 2021 Feb 12;6(1):8 [PMID: 33580358]
Int J Clin Oncol. 2017 Aug;22(4):641-650 [PMID: 28664300]
Eur J Pharm Sci. 2011 Apr 18;42(5):484-8 [PMID: 21324355]
Phys Med Biol. 2021 Feb 09;66(4):045016 [PMID: 33561008]
J Nucl Med. 2016 Jun;57(6):834-5 [PMID: 26912431]
Mol Pharm. 2014 Dec 1;11(12):4363-73 [PMID: 25327847]
Adv Healthc Mater. 2018 Aug;7(16):e1701460 [PMID: 29726118]
Pharmaceutics. 2021 Nov 09;13(11): [PMID: 34834318]
Nano Lett. 2013 Feb 13;13(2):581-5 [PMID: 23360442]
Acc Chem Res. 2012 Oct 16;45(10):1817-27 [PMID: 22950890]
Ann Nucl Med. 2018 Apr;32(3):236-238 [PMID: 29423765]
Biochemistry. 2005 Jan 11;44(1):72-81 [PMID: 15628847]
Dalton Trans. 2017 Oct 31;46(42):14561-14571 [PMID: 28440368]
Nanotechnology. 2022 Jul 15;33(40): [PMID: 35728572]
ACS Nano. 2018 Aug 28;12(8):7519-7528 [PMID: 30047272]
Acc Chem Res. 2021 Aug 5;: [PMID: 34350753]
Inorg Chem. 2010 Jan 18;49(2):616-25 [PMID: 20000368]
EJNMMI Res. 2012 Jul 18;2(1):39 [PMID: 22809406]
Eur J Pharm Sci. 2018 Sep 15;122:239-245 [PMID: 29981892]
ACS Nano. 2011 Apr 26;5(4):3146-57 [PMID: 21384900]
Appl Radiat Isot. 2020 Mar;157:109032 [PMID: 32063327]
Cancer Radiother. 2022 Feb-Apr;26(1-2):29-33 [PMID: 34953690]
Nucl Med Commun. 2008 Mar;29(3):193-207 [PMID: 18349789]
CA Cancer J Clin. 2019 Sep;69(5):386-401 [PMID: 31361333]
J Nucl Med. 2017 Sep;58(9):1380-1385 [PMID: 28408533]
Adv Drug Deliv Rev. 2017 Jan 15;109:102-118 [PMID: 26705852]
Acc Chem Res. 2022 Mar 15;55(6):904-915 [PMID: 35230803]
Chem Soc Rev. 2011 Jan;40(1):149-62 [PMID: 20818455]
J Nucl Med. 2013 Jan;54(1):111-6 [PMID: 23100452]
Bioconjug Chem. 2021 Apr 21;32(4):755-762 [PMID: 33775095]
Chem Soc Rev. 2014 Jan 7;43(1):260-90 [PMID: 24173525]
Brachytherapy. 2012 Jan-Feb;11(1):53-7 [PMID: 22265438]
Eur J Pharmacol. 2009 Dec 25;625(1-3):55-62 [PMID: 19836381]
Nature. 2003 Mar 6;422(6927):37-44 [PMID: 12621426]
Mol Ther Methods Clin Dev. 2016 Dec 07;3:16080 [PMID: 28053997]
Adv Drug Deliv Rev. 2017 Jan 15;109:15-25 [PMID: 27637454]
Semin Radiat Oncol. 2000 Apr;10(2):123-32 [PMID: 10727601]
ACS Nano. 2018 Mar 27;12(3):2482-2497 [PMID: 29498821]
J Nucl Med. 2005 Jan;46 Suppl 1:199S-204S [PMID: 15653670]
J Nucl Med. 2016 Jun;57(6):936-42 [PMID: 26848176]
Acc Chem Res. 2018 Mar 20;51(3):778-788 [PMID: 29489335]
Nanomaterials (Basel). 2021 Jun 25;11(7): [PMID: 34202370]
J Mater Chem B. 2018 Dec 28;6(48):8163-8169 [PMID: 32254935]
Bioconjug Chem. 2021 Aug 18;32(8):1802-1811 [PMID: 34161070]
Front Oncol. 2021 Nov 24;11:766407 [PMID: 34900715]
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12426-31 [PMID: 22802668]
Sci Rep. 2016 Feb 08;6:20614 [PMID: 26852805]
Brachytherapy. 2012 Jan-Feb;11(1):6-19 [PMID: 22265434]
J Nucl Med. 2023 May;64(5):685-692 [PMID: 37055224]
Phys Med. 2017 Nov;43:127-133 [PMID: 29195555]
Molecules. 2020 Apr 10;25(7): [PMID: 32290196]
Anat Rec (Hoboken). 2015 Feb;298(2):418-27 [PMID: 25243822]
AJR Am J Roentgenol. 2017 May;208(5):1116-1126 [PMID: 28301223]
Int J Med Sci. 2012;9(3):193-9 [PMID: 22408567]

Grants

  1. P30 CA014520/NCI NIH HHS
  2. T32 CA009206/NCI NIH HHS

Word Cloud

Similar Articles

Cited By