Chae S.; Le T.H.; Park C.S.; Choi Y.; Kim S.; Lee U.; Heo E.; Lee H.; Kim Y.A.; Kwon O.S.; Yoon H.; Anomalous restoration of sp hybridization in graphene functionalization. Nanoscale 2020,12(25),13351-13359
[DOI:
10.1039/D0NR03422C]
Sidorov A.N.; Yazdanpanah M.M.; Jalilian R.; Ouseph P.J.; Cohn R.W.; Sumanasekera G.U.; Electrostatic deposition of graphene. Nanotechnology 2007,18(13),135301
[DOI:
10.1088/0957-4484/18/13/135301]
Seema H.; Shirinfar B.; Shi G.; Youn I.S.; Ahmed N.; Facile synthesis of a selective biomolecule chemosensor and fabrication of its highly fluorescent graphene complex. J Phys Chem B 2017,121(19),5007-5016
[DOI:
10.1021/acs.jpcb.7b02888]
Goldoni R.; Farronato M.; Connelly S.T.; Tartaglia G.M.; Yeo W.H.; Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens Bioelectron 2021,171,112723
[DOI:
10.1016/j.bios.2020.112723]
Meng Q.; Yu Y.; Tian J.; Yang Z.; Guo S.; Cai R.; Han S.; Liu T.; Ma J.; Multifunctional, durable and highly conductive graphene/sponge nanocomposites. Nanotechnology 2020,31(46),465502
[DOI:
10.1088/1361-6528/ab9f73]
Zhang Z.Z.; Song X.X.; Luo G.; Su Z.J.; Wang K.L.; Cao G.; Li H.O.; Xiao M.; Guo G.C.; Tian L.; Deng G.W.; Guo G.P.; Coherent phonon dynamics in spatially separated graphene mechanical resonators. Proc Natl Acad Sci 2020,117(11),5582-5587
[DOI:
10.1073/pnas.1916978117]
Mahajan C.R.; Joshi L.B.; Varma U.; Naik J.B.; Chaudhari V.R.; Mishra S.; Sustainable drug delivery of famotidine using chitosan-functionalized graphene oxide as nanocarrier. Glob Chall 2019,3(10),1900002
[DOI:
10.1002/gch2.201900002]
Prabowo B.A.; Purwidyantri A.; Liu B.; Lai H.C.; Liu K.C.; Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Nanotechnology 2021,32(9),095503
[DOI:
10.1088/1361-6528/abcd62]
Nejabat M.; Charbgoo F.; Ramezani M.; Graphene as multifunctional delivery platform in cancer therapy. J Biomed Mater Res A 2017,105(8),2355-2367
[DOI:
10.1002/jbm.a.36080]
Gholivand K.; Faraghi M.; Pooyan M.; Babaee L.S.; Malekshah R.E.; Pirastehfar F.; Vahabirad M.; Anti-cancer activity of new phosphoramide-functionalized graphene oxides: An experimental and theoretical evaluation. Curr Med Chem 2023,30(30),3486-3503
[DOI:
10.2174/0929867330666221027152716]
Keramat A.; Kadkhoda J.; Farahzadi R.; Fathi E.; Davaran S.; The potential of graphene oxide and reduced graphene oxide in diagnosis and treatment of cancer. Curr Med Chem 2022,29(26),4529-4546
[DOI:
10.2174/0929867329666220208092157]
Pedrosa M.; Da Silva E.S.; Pastrana-Martínez L.M.; Drazic G.; Falaras P.; Faria J.L.; Figueiredo J.L.; Silva A.M.T.; Hummers’ and Brodie’s graphene oxides as photocatalysts for phenol degradation. J Colloid Interface Sci 2020,567,243-255
[DOI:
10.1016/j.jcis.2020.01.093]
Patel M.A.; Yang H.; Chiu P.L.; Mastrogiovanni D.D.T.; Flach C.R.; Savaram K.; Gomez L.; Hemnarine A.; Mendelsohn R.; Garfunkel E.; Jiang H.; He H.; Direct production of graphene nanosheets for near infrared photoacoustic imaging. ACS Nano 2013,7(9),8147-8157
[DOI:
10.1021/nn403429v]
Peng L.; Xu Z.; Liu Z.; Wei Y.; Sun H.; Li Z.; Zhao X.; Gao C.; An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 2015,6(1),5716
[DOI:
10.1038/ncomms6716]
Kim F.; Luo J.; Cruz-Silva R.; Cote L.J.; Sohn K.; Huang J.; Self-propagating domino-like reactions in oxidized graphite. Adv Funct Mater 2010,20(17),2867-2873
[DOI:
10.1002/adfm.201000736]
Zheng F.; Xu W.L.; Jin H.D.; Zhu M.Q.; Yuan W.H.; Hao X.T.; Ghiggino K.P.; Purified dispersions of graphene in a nonpolar solvent via solvothermal reduction of graphene oxide. Chem Commun 2015,51(18),3824-3827
[DOI:
10.1039/C5CC00056D]
Balaji A.; Zhang J.; Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol 2017,8(1),10
[DOI:
10.1186/s12645-017-0035-z]
Abdelbasset W.K.; Jasim S.A.; Bokov D.O.; Oleneva M.S.; Islamov A.; Hammid A.T.; Mustafa Y.F.; Yasin G.; Alguno A.C.; Kianfar E.; Comparison and evaluation of the performance of graphene-based biosensors. Carbon Letters 2022,32(4),927-951
[DOI:
10.1007/s42823-022-00338-6]
Işın D.; Eksin E.; Erdem A.; Graphene-oxide and ionic liquid modified electrodes for electrochemical sensing of breast cancer 1 gene. Biosensors 2022,12(2),95
[DOI:
10.3390/bios12020095]
Luong J.H.T.; Vashist S.K.; Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites. Biosens Bioelectron 2017,89(Pt 1),293-304
[DOI:
10.1016/j.bios.2015.11.053]
Chen S.L.; Chen C.Y.; Hsieh J.C.H.; Yu Z.Y.; Cheng S.J.; Hsieh K.Y.; Yang J.W.; Kumar P.V.; Lin S.F.; Chen G.Y.; Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis. Nanomaterials 2019,9(12),1725
[DOI:
10.3390/nano9121725]
Qian W.; Miao Z.; Zhang X.J.; Yang X.T.; Tang Y.Y.; Tang Y.Y.; Hu L.Y.; Li S.; Zhu D.; Cheng H.; Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection. Mikrochim Acta 2020,187(7),407
[DOI:
10.1007/s00604-020-04402-8]
Papi M.; Palmieri V.; Digiacomo L.; Giulimondi F.; Palchetti S.; Ciasca G.; Perini G.; Caputo D.; Cartillone M.C.; Cascone C.; Coppola R.; Capriotti A.L.; Laganà A.; Pozzi D.; Caracciolo G.; Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale 2019,11(32),15339-15346
[DOI:
10.1039/C9NR01413F]
Wu C.; Li P.; Fan N.; Han J.; Zhang W.; Zhang W.; Tang B.; A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells. ACS Appl Mater Interfaces 2019,11(48),44999-45006
[DOI:
10.1021/acsami.9b18410]
Geetha Bai R.; Muthoosamy K.; Tuvikene R.; Nay Ming H.; Manickam S.; Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials 2021,11(5),1272
[DOI:
10.3390/nano11051272]
Mahmoodi P.; Rezayi M.; Rasouli E.; Avan A.; Gholami M.; Ghayour Mobarhan M.; Karimi E.; Alias Y.; Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J Nanobiotechnol 2020,18(1),11
[DOI:
10.1186/s12951-020-0577-9]
Shi S.; Yang K.; Hong H.; Valdovinos H.F.; Nayak T.R.; Zhang Y.; Theuer C.P.; Barnhart T.E.; Liu Z.; Cai W.; Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials 2013,34(12),3002-3009
[DOI:
10.1016/j.biomaterials.2013.01.047]
Xu H.; Fan M.; Elhissi A.M.A.; Zhang Z.; Wan K.W.; Ahmed W.; Phoenix D.A.; Sun X.; PEGylated graphene oxide for tumor-targeted delivery of paclitaxel. Nanomedicine 2015,10(8),1247-1262
[DOI:
10.2217/nnm.14.233]
Lan M.Y.; Hsu Y.B.; Lan M.C.; Chen J.P.; Lu Y.J.; Polyethylene glycol-coated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells. Int J Nanomedicine 2020,15,7569-7582
[DOI:
10.2147/IJN.S265437]
Shuai C.; Wang B.; Bin S.; Peng S.; Gao C.; TiO -induced in situ reaction in graphene oxide-reinforced az61 biocomposites to enhance the interfacial bonding. ACS Appl Mater Interfaces 2020,12(20),23464-23473
[DOI:
10.1021/acsami.0c04020]
Alibolandi M.; Mohammadi M.; Taghdisi S.M.; Ramezani M.; Abnous K.; Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr Polym 2017,155,218-229
[DOI:
10.1016/j.carbpol.2016.08.046]
Gu Y.; Guo Y.; Wang C.; Xu J.; Wu J.; Kirk T.B.; Ma D.; Xue W.; A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater Sci Eng C 2017,70(Pt 1),572-585
[DOI:
10.1016/j.msec.2016.09.035]
Slekiene N.; Snitka V.; Impact of graphene oxide functionalized with doxorubicin on viability of mouse hepatoma MH-22A cells. Toxicol In Vitro 2020,65,104821
[DOI:
10.1016/j.tiv.2020.104821]
Zhang Y.M.; Cao Y.; Yang Y.; Chen J.T.; Liu Y.; A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chem Commun 2014,50(86),13066-13069
[DOI:
10.1039/C4CC04533E]
Kansara V.; Patil R.; Tripathi R.; Jha P.K.; Bahadur P.; Tiwari S.; Functionalized graphene nanosheets with improved dispersion stability and superior paclitaxel loading capacity. Colloids Surf B Biointerfaces 2019,173,421-428
[DOI:
10.1016/j.colsurfb.2018.10.016]
Yang Y.F.; Meng F.Y.; Li X.H.; Wu N.N.; Deng Y.H.; Wei L.Y.; Zeng X.P.; Magnetic graphene oxide-FeO-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J Nanosci Nanotechnol 2019,19(12),7517-7525
[DOI:
10.1166/jnn.2019.16768]
Lin K.C.; Lin M.W.; Hsu M.N.; Yu-Chen G.; Chao Y.C.; Tuan H.Y.; Chiang C.S.; Hu Y.C.; Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Theranostics 2018,8(9),2477-2487
[DOI:
10.7150/thno.24173]
Lu Y.J.; Lan Y.H.; Chuang C.C.; Lu W.T.; Chan L.Y.; Hsu P.W.; Chen J.P.; Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy. Int J Mol Sci 2020,21(19),7111
[DOI:
10.3390/ijms21197111]
Liu X.; Gao M.M.; Cheng Z.; Cai Z-K.; Yu L.; Niu G-M.; Li J-Y.; Bai Y.; Zhao S-Z.; Song Y-C.; Wang X-G.; Dong Y.; Yu X.; Tao Z.; Yuan Z-Y.; Stereotactic body radiotherapy compared with video-assisted thoracic surgery after propensity-score matching in elderly patients with pathologically-proven early-stage non-small cell lung cancer. Precis Radiat Oncol 2022,6(4),279-288
[DOI:
10.1002/pro6.1175]
Toomeh D.; Gadoue S.M.; Yasmin-Karim S.; Singh M.; Shanker R.; Pal Singh S.; Kumar R.; Sajo E.; Ngwa W.; Minimizing the potential of cancer recurrence and metastasis by the use of graphene oxide nano-flakes released from smart fiducials during image-guided radiation therapy. Phys Med 2018,55,8-14
[DOI:
10.1016/j.ejmp.2018.10.001]
Kadkhoda J.; Tarighatnia A.; Barar J.; Aghanejad A.; Davaran S.; Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagn Photodyn Ther 2022,37,102697
[DOI:
10.1016/j.pdpdt.2021.102697]
Ma M.; Cheng L.; Zhao A.; Zhang H.; Zhang A.; Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagn Photodyn Ther 2020,29,101640
[DOI:
10.1016/j.pdpdt.2019.101640]
Das P.; Mudigunda S.V.; Darabdhara G.; Boruah P.K.; Ghar S.; Rengan A.K.; Das M.R.; Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. J Photochem Photobiol B 2020,212,112028
[DOI:
10.1016/j.jphotobiol.2020.112028]
Gulzar A.; Xu J.; Yang D.; Xu L.; He F.; Gai S.; Yang P.; Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans 2018,47(11),3931-3939
[DOI:
10.1039/C7DT04141A]
Liu P.; Xie X.; Liu M.; Hu S.; Ding J.; Zhou W.; A smart MnO-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm Sin B 2021,11(3),823-834
[DOI:
10.1016/j.apsb.2020.07.021]
Guo W.; Chen Z.; Feng X.; Shen G.; Huang H.; Liang Y.; Zhao B.; Li G.; Hu Y.; Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J Nanobiotechnol 2021,19(1),146
[DOI:
10.1186/s12951-021-00874-9]
Zeng W.N.; Yu Q.P.; Wang D.; Liu J.L.; Yang Q.J.; Zhou Z.K.; Zeng Y.P.; Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J Nanobiotechnol 2021,19(1),79
[DOI:
10.1186/s12951-021-00831-6]
Zhao C.; Song X.; Liu Y.; Fu Y.; Ye L.; Wang N.; Wang F.; Li L.; Mohammadniaei M.; Zhang M.; Zhang Q.; Liu J.; Synthesis of graphene quantum dots and their applications in drug delivery. J Nanobiotechnol 2020,18(1),142
[DOI:
10.1186/s12951-020-00698-z]
Vatanparast M.; Shariatinia Z.; Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: A combined density functional theory and molecular dynamics approach. J Mater Chem B Mater Biol Med 2019,7(40),6156-6171
[DOI:
10.1039/C9TB00971J]
Singh G.; Kaur H.; Sharma A.; Singh J.; Alajangi H.K.; Kumar S.; Singla N.; Kaur I.P.; Barnwal R.P.; Carbon based nanodots in early diagnosis of cancer. Front Chem 2021,9,669169
[DOI:
10.3389/fchem.2021.669169]
Cunci L.; González-Colón V.; Lee Vargas-Pérez B.; Ortiz-Santiago J.; Pagán M.; Carrion P.; Cruz J.; Molina-Ontoria A.; Martinez N.; Silva W.; Echegoyen L.; Cabrera C.R.; Multicolor fluorescent graphene oxide quantum dots for sensing cancer cell biomarkers. ACS Appl Nano Mater 2021,4(1),211-219
[DOI:
10.1021/acsanm.0c02526]
Xu A.; He P.; Ye C.; Liu Z.; Gu B.; Gao B.; Li Y.; Dong H.; Chen D.; Wang G.; Yang S.; Ding G.; Polarizing graphene quantum dots toward long-acting intracellular reactive oxygen species evaluation and tumor detection. ACS Appl Mater Interfaces 2020,12(9),10781-10790
[DOI:
10.1021/acsami.9b20434]
Ganganboina A.B.; Dega N.K.; Tran H.L.; Darmonto W.; Doong R.A.; Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens Bioelectron 2021,181,113151
[DOI:
10.1016/j.bios.2021.113151]
Pothipor C.; Jakmunee J.; Bamrungsap S.; Ounnunkad K.; An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst 2021,146(12),4000-4009
[DOI:
10.1039/D1AN00436K]
Zhang H.; Ba S.; Yang Z.; Wang T.; Lee J.Y.; Li T.; Shao F.; Graphene quantum dot-based nanocomposites for diagnosing cancer biomarker ape1 in living cells. ACS Appl Mater Interfaces 2020,12(12),13634-13643
[DOI:
10.1021/acsami.9b21385]
Marko A.J.; Borah B.M.; Siters K.E.; Missert J.R.; Gupta A.; Pera P.; Isaac-Lam M.F.; Pandey R.K.; Targeted nanoparticles for fluorescence imaging of folate receptor positive tumors. Biomolecules 2020,10(12),1651
[DOI:
10.3390/biom10121651]
Assaraf Y.G.; Leamon C.P.; Reddy J.A.; The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat 2014,17(4-6),89-95
[DOI:
10.1016/j.drup.2014.10.002]
Feng S.; Pan J.; Li C.; Zheng Y.; Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells. Nanotechnology 2020,31(13),135701
[DOI:
10.1088/1361-6528/ab5f7f]
Liu H.; Li C.; Qian Y.; Hu L.; Fang J.; Tong W.; Nie R.; Chen Q.; Wang H.; Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials 2020,232,119700
[DOI:
10.1016/j.biomaterials.2019.119700]
Dharmaratne N.U.; Kaplan A.R.; Glazer P.M.; Targeting the hypoxic and acidic tumor microenvironment with ph-sensitive peptides. Cells 2021,10(3),541
[DOI:
10.3390/cells10030541]
Fang J.; Liu Y.; Chen Y.; Ouyang D.; Yang G.; Yu T.; Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int J Nanomedicine 2018,13,5991-6007
[DOI:
10.2147/IJN.S175934]
Khodadadei F.; Safarian S.; Ghanbari N.; Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Mater Sci Eng C 2017,79,280-285
[DOI:
10.1016/j.msec.2017.05.049]
Wei Z.; Yin X.; Cai Y.; Xu W.; Song C.; Wang Y.; Zhang J.; Kang A.; Wang Z.; Han W.; Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int J Nanomedicine 2018,13,1505-1524
[DOI:
10.2147/IJN.S156984]
Nasrollahi F.; Koh Y.R.; Chen P.; Varshosaz J.; Khodadadi A.A.; Lim S.; Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater Sci Eng C 2019,94,247-257
[DOI:
10.1016/j.msec.2018.09.020]
Iannazzo D.; Pistone A.; Salamò M.; Galvagno S.; Romeo R.; Giofré S.V.; Branca C.; Visalli G.; Di Pietro A.; Graphene quantum dots for cancer targeted drug delivery. Int J Pharm 2017,518(1-2),185-192
[DOI:
10.1016/j.ijpharm.2016.12.060]
Nigam Joshi P.; Agawane S.; Athalye M.C.; Jadhav V.; Sarkar D.; Prakash R.; Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater Sci Eng C 2017,78,1203-1211
[DOI:
10.1016/j.msec.2017.03.176]
Au T.H.; Nguyen B.N.; Nguyen P.H.; Pethe S.; Vo-Thanh G.; Vu Thi T.H.; Vinblastine loaded on graphene quantum dots and its anticancer applications. J Microencapsul 2022,39(3),239-251
[DOI:
10.1080/02652048.2022.2060361]
Ramedani A.; Sabzevari O.; Simchi A.; Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment. Int J Pharm 2022,629,122373
[DOI:
10.1016/j.ijpharm.2022.122373]
Yu C.X.; Radiotherapy of early-stage breast cancer. Precis Radiat Oncol 2023,7(1),67-79
[DOI:
10.1002/pro6.1183]
Esgandari K.; Mohammadian M.; Zohdiaghdam R.; Rastin S.J.; Alidadi S.; Behrouzkia Z.; Combined treatment with silver graphene quantum dot, radiation, and 17-AAG induces anticancer effects in breast cancer cells. J Cell Physiol 2021,236(4),2817-2828
[DOI:
10.1002/jcp.30046]
Reagen S.; Wu Y.; Sun D.; Munoz C.; Oncel N.; Combs C.; Zhao J.X.; Development of biodegradable GQDs-hMSNs for fluorescence imaging and dual cancer treatment via photodynamic therapy and drug delivery. Int J Mol Sci 2022,23(23),14931
[DOI:
10.3390/ijms232314931]
Ostańska E.; Aebisher D.; Bartusik-Aebisher D.; The potential of photodynamic therapy in current breast cancer treatment methodologies. Biomed Pharmacother 2021,137,111302
[DOI:
10.1016/j.biopha.2021.111302]
Cao H.; Fang B.; Liu J.; Shen Y.; Shen J.; Xiang P.; Zhou Q.; De Souza S.C.; Li D.; Tian Y.; Luo L.; Zhang Z.; Tian X.; Photodynamic therapy directed by three-photon active rigid plane organic photosensitizer. Adv Healthc Mater 2021,10(7),2001489
[DOI:
10.1002/adhm.202001489]
Kwiatkowski S.; Knap B.; Przystupski D.; Saczko J.; Kędzierska E.; Knap-Czop K.; Kotlińska J.; Michel O.; Kotowski K.; Kulbacka J.; Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018,106,1098-1107
[DOI:
10.1016/j.biopha.2018.07.049]
Chen L.; Liu D.; Wu M.; Chau H.F.; Wang K.; Fung Y.H.; Wong K.L.; Wang Z.; Wu F.; Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization. Nanotechnology 2020,31(31),315101
[DOI:
10.1088/1361-6528/ab86ea]
Zou Z.; Chang H.; Li H.; Wang S.; Induction of reactive oxygen species: An emerging approach for cancer therapy. Apoptosis 2017,22(11),1321-1335
[DOI:
10.1007/s10495-017-1424-9]
Hamblin M.R.; Abrahamse H.; Factors affecting photodynamic therapy and anti-tumor immune response. Anticancer Agents Med Chem 2020,21(2),123-136
[DOI:
10.2174/1871520620666200318101037]
He S.; Li J.; Chen M.; Deng L.; Yang Y.; Zeng Z.; Xiong W.; Wu X.; Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy. Int J Nanomedicine 2020,15,8451-8463
[DOI:
10.2147/IJN.S265134]
Neelgund G.M.; Oki A.R.; Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J Colloid Interface Sci 2016,484,135-145
[DOI:
10.1016/j.jcis.2016.07.078]
Shi J.; Zhao Z.; Liu Z.; Wu R.; Wang Y.; Ultralow-intensity NIR light triggered on-demand drug release by employing highly emissive UCNP and photocleavable linker with low bond dissociation energy. Int J Nanomedicine 2019,14,4017-4028
[DOI:
10.2147/IJN.S201982]
Han R.; Tang K.; Hou Y.; Yu J.; Wang C.; Wang Y.; Ultralow-intensity near infrared light synchronously activated collaborative chemo/photothermal/photodynamic therapy. Biomater Sci 2020,8(2),607-618
[DOI:
10.1039/C9BM01607D]
Lu H.; Li W.; Qiu P.; Zhang X.; Qin J.; Cai Y.; Lu X.; MnO doped graphene nanosheets for carotid body tumor combination therapy. Nanoscale Adv 2022,4(20),4304-4313
[DOI:
10.1039/D2NA00086E]
Yu T.; Hu Y.; Feng G.; Hu K.; Noninvasive tumor therapy: A graphene-based flexible device as a specific far-infrared emitter for noninvasive tumor therapy. Adv Ther 2020,3(3),2070005
[DOI:
10.1002/adtp.202070005]
Shi J.; Wang B.; Chen Z.; Liu W.; Pan J.; Hou L.; Zhang Z.; A multi-functional tumor theranostic nanoplatform for mri guided photothermal-chemotherapy. Pharm Res 2016,33(6),1472-1485
[DOI:
10.1007/s11095-016-1891-7]
Khan H.A.; Lee Y.K.; Shaik M.R.; Alrashood S.T.; Ekhzaimy A.A.; Nanocomposites of nitrogen-doped graphene oxide and manganese oxide for photodynamic therapy and magnetic resonance imaging. Int J Mol Sci 2022,23(23),15087
[DOI:
10.3390/ijms232315087]
Zhou C.; Wu H.; Wang M.; Huang C.; Yang D.; Jia N.; Functionalized graphene oxide/FeO hybrids for cellular magnetic resonance imaging and fluorescence labeling. Mater Sci Eng C 2017,78,817-825
[DOI:
10.1016/j.msec.2017.04.139]
Gonzalez-Rodriguez R.; Campbell E.; Naumov A.; Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One 2019,14(6),e0217072
[DOI:
10.1371/journal.pone.0217072]
Yang Y.; Chen S.; Li H.; Yuan Y.; Zhang Z.; Xie J.; Hwang D.W.; Zhang A.; Liu M.; Zhou X.; Engineered paramagnetic graphene quantum dots with enhanced relaxivity for tumor imaging. Nano Lett 2019,19(1),441-448
[DOI:
10.1021/acs.nanolett.8b04252]
Luo Y.; Tang Y.; Liu T.; Chen Q.; Zhou X.; Wang N.; Ma M.; Cheng Y.; Chen H.; Engineering graphene oxide with ultrasmall SPIONs and smart drug release for cancer theranostics. Chem Commun 2019,55(13),1963-1966
[DOI:
10.1039/C8CC09185D]
Zhang G.; Du R.; Qian J.; Zheng X.; Tian X.; Cai D.; He J.; Wu Y.; Huang W.; Wang Y.; Zhang X.; Zhong K.; Zou D.; Wu Z.; A tailored nanosheet decorated with a metallized dendrimer for angiography and magnetic resonance imaging-guided combined chemotherapy. Nanoscale 2018,10(1),488-498
[DOI:
10.1039/C7NR07957E]
Cao J.; An H.; Huang X.; Fu G.; Zhuang R.; Zhu L.; Xie J.; Zhang F.; Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. Nanoscale 2016,8(19),10152-10159
[DOI:
10.1039/C6NR02012G]
Wang C.; Ravi S.; Garapati U.S.; Das M.; Howell M.; Mallela J.; Alwarappan S.; Mohapatra S.S.; Mohapatra S.; Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J Mater Chem B Mater Biol Med 2013,1(35),4396-4405
[DOI:
10.1039/c3tb20452a]
Son S.; Kim J.H.; Wang X.; Zhang C.; Yoon S.A.; Shin J.; Sharma A.; Lee M.H.; Cheng L.; Wu J.; Kim J.S.; Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev 2020,49(11),3244-3261
[DOI:
10.1039/C9CS00648F]
Costley D.; Mc Ewan C.; Fowley C.; McHale A.P.; Atchison J.; Nomikou N.; Callan J.F.; Treating cancer with sonodynamic therapy: A review. Int J Hyperthermia 2015,31(2),107-117
[DOI:
10.3109/02656736.2014.992484]
Ninomiya K.; Noda K.; Ogino C.; Kuroda S.; Shimizu N.; Enhanced OH radical generation by dual-frequency ultrasound with TiO nanoparticles: Its application to targeted sonodynamic therapy. Ultrason Sonochem 2014,21(1),289-294
[DOI:
10.1016/j.ultsonch.2013.05.005]
Yumita N.; Iwase Y.; Umemura S.I.; Chen F.S.; Momose Y.; Sonodynamically-induced anticancer effects of polyethylene glycol-modified carbon nano tubes. Anticancer Res 2020,40(5),2549-2557
[DOI:
10.21873/anticanres.14225]
Milowska K.; Ultrasound--mechanisms of action and application in sonodynamic therapy. Postepy Hig Med Dosw 2007,61,338-349
Lafond M.; Yoshizawa S.; Umemura S.; Sonodynamic therapy: Advances and challenges in clinical translation. J Ultrasound Med 2019,38(3),567-580
[DOI:
10.1002/jum.14733]
Sun H.; Ge W.; Gao X.; Wang S.; Jiang S.; Hu Y.; Yu M.; Hu S.; Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer. PLoS One 2015,10(9),e0137980
[DOI:
10.1371/journal.pone.0137980]
Liang S.; Deng X.; Ma P.; Cheng Z.; Lin J.; Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv Mater 2020,32(47),2003214
[DOI:
10.1002/adma.202003214]
Roberts J.E.; Techniques to improve photodynamic therapy. Photochem Photobiol 2020,96(3),524-528
[DOI:
10.1111/php.13223]
Cheng D.; Wang X.; Zhou X.; Li J.; Nanosonosensitizers with ultrasound-induced reactive oxygen species generation for cancer sonodynamic immunotherapy. Front Bioeng Biotechnol 2021,9,761218
[DOI:
10.3389/fbioe.2021.761218]
Huang J.; Xiao Z.; An Y.; Han S.; Wu W.; Wang Y.; Guo Y.; Shuai X.; Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. Biomaterials 2021,269,120636
[DOI:
10.1016/j.biomaterials.2020.120636]
Zhang Q.; Bao C.; Cai X.; Jin L.; Sun L.; Lang Y.; Li L.; Sonodynamic therapy-assisted immunotherapy: A novel modality for cancer treatment. Cancer Sci 2018,109(5),1330-1345
[DOI:
10.1111/cas.13578]
Gu Z.; Zhu S.; Yan L.; Zhao F.; Zhao Y.; Graphene-based smart platforms for combined cancer therapy. Adv Mater 2019,31(9),1800662
[DOI:
10.1002/adma.201800662]
Fusco L.; Gazzi A.; Peng G.; Shin Y.; Vranic S.; Bedognetti D.; Vitale F.; Yilmazer A.; Feng X.; Fadeel B.; Casiraghi C.; Delogu L.G.; Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020,10(12),5435-5488
[DOI:
10.7150/thno.40068]
Dai C.; Zhang S.; Liu Z.; Wu R.; Chen Y.; Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano 2017,11(9),9467-9480
[DOI:
10.1021/acsnano.7b05215]
Chen Y.W.; Liu T.Y.; Chang P.H.; Hsu P.H.; Liu H.L.; Lin H.C.; Chen S.Y.; A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale 2016,8(25),12648-12657
[DOI:
10.1039/C5NR07782F]
Lee H.R.; Kim D.W.; Jones V.O.; Choi Y.; Ferry V.E.; Geller M.A.; Azarin S.M.; Sonosensitizer-functionalized graphene nanoribbons for adhesion blocking and sonodynamic ablation of ovarian cancer spheroids. Adv Healthc Mater 2021,10(13),2001368
[DOI:
10.1002/adhm.202001368]
Qin D.; Zou Q.; Lei S.; Wang W.; Li Z.; Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues. Ultrason Sonochem 2021,78,105712
[DOI:
10.1016/j.ultsonch.2021.105712]
Shen Z.Y.; Jiang Y.M.; Zhou Y.F.; High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound. Ultrason Sonoch 2018,40((Pt A)),980-987
[DOI:
10.1016/j.ultsonch.2017.09.015]
Kooiman K.; Roovers S.; Langeveld S.A.G.; Kleven R.T.; Dewitte H.; O’Reilly M.A.; Escoffre J.M.; Bouakaz A.; Verweij M.D.; Hynynen K.; Lentacker I.; Stride E.; Holland C.K.; Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med Biol 2020,46(6),1296-1325
[DOI:
10.1016/j.ultrasmedbio.2020.01.002]
Shen Z.; Shao J.; Zhang J.; Qu W.; Ultrasound cavitation enhanced chemotherapy: In vivo research and clinical application. Exp Biol Med 2020,245(14),1200-1212
[DOI:
10.1177/1535370220936150]
Sontakke A.D.; Purkait M.K.; Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls. Ultrason Sonochem 2020,63,104976
[DOI:
10.1016/j.ultsonch.2020.104976]
Silva L.I.; Mirabella D.A.; Pablo Tomba J.; Riccardi C.C.; Optimizing graphene production in ultrasonic devices. Ultrasonics 2020,100,105989
[DOI:
10.1016/j.ultras.2019.105989]
Zhao W.; Li M.; Qi Y.; Tao Y.; Shi Z.; Liu Y.; Cheng J.; Ultrasound sonochemical synthesis of amorphous SbS-graphene composites for sodium-ion batteries. J Colloid Interface Sci 2021,586,404-411
[DOI:
10.1016/j.jcis.2020.10.104]
Štengl V.; Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chemistry 2012,18(44),14047-14054
[DOI:
10.1002/chem.201201411]
Geetha Bai R.; Muthoosamy K.; Shipton F.N.; Manickam S.; Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells. Ultrason Sonochem 2017,36,129-138
[DOI:
10.1016/j.ultsonch.2016.11.021]
Gao H.; Xue C.; Hu G.; Zhu K.; Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO/HO medium. Ultrason Sonochem 2017,37,120-127
[DOI:
10.1016/j.ultsonch.2017.01.001]
Zhou Y.; Yang K.; Cui J.; Ye J.Y.; Deng C.X.; Controlled permeation of cell membrane by single bubble acoustic cavitation. J Control Release 2012,157(1),103-111
[DOI:
10.1016/j.jconrel.2011.09.068]
Lentacker I.; De Cock I.; Deckers R.; De Smedt S.C.; Moonen C.T.W.; Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv Drug Deliv Rev 2014,72,49-64
[DOI:
10.1016/j.addr.2013.11.008]
Yang Y.; Li Q.; Guo X.; Tu J.; Zhang D.; Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrason Sonochem 2020,67,105096
[DOI:
10.1016/j.ultsonch.2020.105096]
Daigeler A.; Chromik A.M.; Haendschke K.; Emmelmann S.; Siepmann M.; Hensel K.; Schmitz G.; Klein-Hitpass L.; Steinau H.U.; Lehnhardt M.; Hauser J.; Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma. Ultrasound Med Biol 2010,36(11),1893-1906
[DOI:
10.1016/j.ultrasmedbio.2010.08.009]
Shen Z.Y.; Xia G.L.; Wu M.F.; Ji L.Y.; Li Y.J.; The effects of percutaneous ethanol injection followed by 20-kHz ultrasound and microbubbles on rabbit hepatic tumors. J Cancer Res Clin Oncol 2016,142(2),373-378
[DOI:
10.1007/s00432-015-2034-y]
Zhou Q.; Shao S.; Wang J.; Xu C.; Xiang J.; Piao Y.; Zhou Z.; Yu Q.; Tang J.; Liu X.; Gan Z.; Mo R.; Gu Z.; Shen Y.; Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat Nanotechnol 2019,14(8),799-809
[DOI:
10.1038/s41565-019-0485-z]
Rizwanullah M.; Alam M.; Harshita ; Mir S.R.; Rizvi M.M.A.; Amin S.; Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr Pharm Des 2020,26(11),1206-1215
[DOI:
10.2174/1381612826666200116150426]
Yu Z.; Guo J.; Hu M.; Gao Y.; Huang L.; Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano 2020,14(4),4816-4828
[DOI:
10.1021/acsnano.0c00708]
Cao C.; Wang Q.; Liu Y.; Lung cancer combination therapy: Doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers. Drug Des Devel Ther 2019,13,1087-1098
[DOI:
10.2147/DDDT.S198003]
Luo S.; Zhu Y.; Li Y.; Chen L.; Lv S.; Zhang Y.; Ge L.; Zhou W.; Targeted chemotherapy for breast cancer using an intelligent doxorubicin-loaded hexapeptide hydrogel. J Biomed Nanotechnol 2020,16(6),842-852
[DOI:
10.1166/jbn.2020.2935]
Benjanuwattra J.; Siri-Angkul N.; Chattipakorn S.C.; Chattipakorn N.; Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacol Res 2020,151,104542
[DOI:
10.1016/j.phrs.2019.104542]
Zhang L.; Qu X.; Teng Y.; Shi J.; Yu P.; Sun T.; Wang J.; Zhu Z.; Zhang X.; Zhao M.; Liu J.; Jin B.; Luo Y.; Teng Z.; Dong Y.; Wen F.; An Y.; Yuan C.; Chen T.; Zhou L.; Chen Y.; Zhang J.; Wang Z.; Qu J.; Jin F.; Zhang J.; Jin X.; Xie X.; Wang J.; Man L.; Fu L.; Liu Y.; Efficacy of thalidomide in preventing delayed nausea and vomiting induced by highly emetogenic chemotherapy: A randomized, multicenter, double-blind, placebo-controlled phase III trial (CLOG1302 study). J Clin Oncol 2017,35(31),3558-3565
[DOI:
10.1200/JCO.2017.72.2538]
Vargel I.; Erdem A.; Ertoy D.; Pinar A.; Erk Y.; Altundag M.K.; Gullu I.; Effects of growth factors on doxorubicin-induced skin necrosis: Documentation of histomorphological alterations and early treatment by GM-CSF and G-CSF. Ann Plast Surg 2002,49(6),646-653
[DOI:
10.1097/00000637-200212000-00015]
Liu Y.; Qiao L.; Zhang S.; Wan G.; Chen B.; Zhou P.; Zhang N.; Wang Y.; Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater 2018,66,310-324
[DOI:
10.1016/j.actbio.2017.11.010]
Dong K.; Zhao Z.Z.; Kang J.; Lin L.R.; Chen W.T.; Liu J.X.; Wu X.L.; Lu T.L.; Cinnamaldehyde and doxorubicin co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int J Nanomedicine 2020,15,10285-10304
[DOI:
10.2147/IJN.S283981]
Zhang J.; Chen L.; Shen B.; Chen L.; Mo J.; Feng J.; Dual-sensitive graphene oxide loaded with proapoptotic peptides and anticancer drugs for cancer synergetic therapy. Langmuir 2019,35(18),6120-6128
[DOI:
10.1021/acs.langmuir.9b00611]
Singh M.; Gupta P.; Baronia R.; In vitro cytotoxicity of GO-DOx on FaDu squamous carcinoma cell lines. Int J Nanomedicine 2018,13,107-111
Fong Y.; Chen C.H.; Chen J.P.; Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials 2017,7(11),388
[DOI:
10.3390/nano7110388]
Ziemys A.; Yokoi K.; Kojic M.; Capillary collagen as the physical transport barrier in drug delivery to tumor microenvironment. Tissue Barriers 2015,3(3),e1037418
[DOI:
10.1080/21688370.2015.1037418]
Shen Z.Y.; Shen B.Q.; Shen A.J.; Zhu X.H.; Cavitation-enhanced delivery of the nanomaterial graphene oxide-doxorubicin to hepatic tumors in nude mice using 20 khz low-frequency ultrasound and microbubbles. J Nanomater 2020,2020(24),1-13
[DOI:
10.1155/2020/3136078]
Liao C.; Li Y.; Tjong S.; Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci 2018,19(11),3564
[DOI:
10.3390/ijms19113564]
Zhang B.; Wei P.; Zhou Z.; Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv Drug Deliv Rev 2016,105((Pt B)),145-162
Russier J.; Treossi E.; Scarsi A.; Perrozzi F.; Dumortier H.; Ottaviano L.; Meneghetti M.; Palermo V.; Bianco A.; Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale 2013,5(22),11234-11247
[DOI:
10.1039/c3nr03543c]
Mendes R.G.; Koch B.; Bachmatiuk A.; Ma X.; Sanchez S.; Damm C.; Schmidt O.G.; Gemming T.; Eckert J.; Rümmeli M.H.; A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B Mater Biol Med 2015,3(12),2522-2529
[DOI:
10.1039/C5TB00180C]
Wojtoniszak M.; Chen X.; Kalenczuk R.J.; Wajda A.; Łapczuk J.; Kurzewski M.; Drozdzik M.; Chu P.K.; Borowiak-Palen E.; Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf B Biointerfaces 2012,89,79-85
[DOI:
10.1016/j.colsurfb.2011.08.026]
Matesanz M.C.; Vila M.; Feito M.J.; Linares J.; Gonçalves G.; Vallet-Regi M.; Marques P.A.A.P.; Portolés M.T.; The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials 2013,34(5),1562-1569
[DOI:
10.1016/j.biomaterials.2012.11.001]
Akhavan O.; Ghaderi E.; Akhavan A.; Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 2012,33(32),8017-8025
[DOI:
10.1016/j.biomaterials.2012.07.040]
Wu Y.; Wang F.; Wang S.; Ma J.; Xu M.; Gao M.; Liu R.; Chen W.; Liu S.; Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale 2018,10(30),14637-14650
[DOI:
10.1039/C8NR02798F]
Dasgupta A.; Sarkar J.; Ghosh M.; Bhattacharya A.; Mukherjee A.; Chattopadhyay D.; Acharya K.; Green conversion of graphene oxide to graphene nanosheets and its biosafety study. PLoS One 2017,12(2),e0171607
[DOI:
10.1371/journal.pone.0171607]
Palmieri V.; Perini G.; De Spirito M.; Papi M.; Graphene oxide touches blood: In vivo interactions of bio-coronated 2D materials. Nanoscale Horiz 2019,4(2),273-290
[DOI:
10.1039/C8NH00318A]
Ren H.; Wang C.; Zhang J.; Zhou X.; Xu D.; Zheng J.; Guo S.; Zhang J.; DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 2010,4(12),7169-7174
[DOI:
10.1021/nn101696r]
Lu C.J.; Jiang X.F.; Junaid M.; Ma Y.B.; Jia P.P.; Wang H.B.; Pei D.S.; Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. Chemosphere 2017,184,795-805
[DOI:
10.1016/j.chemosphere.2017.06.049]
Ali-boucetta H.; Bitounis D.; Raveendran-Nair R.; Servant A.; Van den Bossche J.; Kostarelos K.; Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv Healthc Mater 2013,2(3),433-441
[DOI:
10.1002/adhm.201200248]
Singh S.K.; Singh M.K.; Kulkarni P.P.; Sonkar V.K.; Grácio J.J.A.; Dash D.; Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 2012,6(3),2731-2740
[DOI:
10.1021/nn300172t]
Liu Y.; Luo Y.; Wu J.; Wang Y.; Yang X.; Yang R.; Wang B.; Yang J.; Zhang N.; Graphene oxide can induce in vitro and in vivo mutagenesis. Sci Rep 2013,3(1),3469
[DOI:
10.1038/srep03469]
Ma J.; Liu R.; Wang X.; Liu Q.; Chen Y.; Valle R.P.; Zuo Y.Y.; Xia T.; Liu S.; Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano 2015,9(10),10498-10515
[DOI:
10.1021/acsnano.5b04751]
Mendonça M.C.P.; Soares E.S.; de Jesus M.B.; Ceragioli H.J.; Batista Â.G.; Nyúl-Tóth Á.; Molnár J.; Wilhelm I.; Maróstica M.R.; Krizbai I.; da Cruz-Höfling M.A.; PEGylation of reduced graphene oxide induces toxicity in cells of the blood–brain barrier: An in vitro and in vivo Study. Mol Pharm 2016,13(11),3913-3924
[DOI:
10.1021/acs.molpharmaceut.6b00696]
Amrollahi-Sharifabadi M.; Koohi M.K.; Zayerzadeh E.; Hablolvarid M.H.; Hassan J.; Seifalian A.M.; in vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int J Nanomedicine 2018,13,4757-4769
[DOI:
10.2147/IJN.S168731]
Wang K.; Ruan J.; Song H.; Zhang J.; Wo Y.; Guo S.; Cui D.; Biocompatibility of graphene oxide. Nanoscale Res Lett 2010,6(1),8
[DOI:
10.1007/s11671-010-9751-6]
Jiang Li.; Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. Nano Taday 2020,35(12),100922
Rhazouani A.; Gamrani H.; El Achaby M.; Aziz K.; Gebrati L.; Uddin M.S.; Aziz F.; Synthesis and toxicity of graphene oxide nanoparticles: A literature review of in vitro and in vivo studies. BioMed Res Int 2021,2021,1-19
[DOI:
10.1155/2021/5518999]
Shahriari S.; Sastry M.; Panjikar S.; Singh Raman R.K.; Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnol Sci Appl 2021,14,197-220
[DOI:
10.2147/NSA.S334487]
Fontana C.R.; Lerman M.A.; Patel N.; Grecco C.; de Souza Costa C.A.; Amiji M.M.; Bagnato V.S.; Soukos N.S.; Safety assessment of oral photodynamic therapy in rats. Lasers Med Sci 2013,28(2),479-486
[DOI:
10.1007/s10103-012-1091-6]
Lucky S.S.; Muhammad Idris N.; Li Z.; Huang K.; Soo K.C.; Zhang Y.; Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano 2015,9(1),191-205
[DOI:
10.1021/nn503450t]
Younis M.R.; Wang C.; An R.; Wang S.; Younis M.A.; Li Z.Q.; Wang Y.; Ihsan A.; Ye D.; Xia X.H.; Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 2019,13(2),8b09552
[DOI:
10.1021/acsnano.8b09552]
Beltrán Hernández I.; Yu Y.; Ossendorp F.; Korbelik M.; Oliveira S.; Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: Clinical recommendations. J Clin Med 2020,9(2),333
[DOI:
10.3390/jcm9020333]
Choi V.; Rajora M.A.; Zheng G.; Activating drugs with sound: Mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjug Chem 2020,31(4),967-989
[DOI:
10.1021/acs.bioconjchem.0c00029]
Sviridov A.P.; Osminkina L.A.; Kharin A.Y.; Gongalsky M.B.; Kargina J.V.; Kudryavtsev A.A.; Bezsudnova Y.I.; Perova T.S.; Geloen A.; Lysenko V.; Timoshenko V.Y.; Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology 2017,28(10),105102
[DOI:
10.1088/1361-6528/aa5b7c]
Yumita N.; Umemura S.; Sonodynamic antitumour effect of chloroaluminum phthalocyanine tetrasulfonate on murine solid tumour. J Pharm Pharmacol 2010,56(1),85-90
[DOI:
10.1211/0022357022412]
Canavese G.; Ancona A.; Racca L.; Canta M.; Dumontel B.; Barbaresco F.; Limongi T.; Cauda V.; Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem Eng J 2018,340,155-172
[DOI:
10.1016/j.cej.2018.01.060]