Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy.

Li Wen Cui, Lu Yao Fan, Zhi Yong Shen
Author Information
  1. Li Wen Cui: Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China.
  2. Lu Yao Fan: Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China.
  3. Zhi Yong Shen: Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China. ORCID

Abstract

Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.

Keywords

References

Chae S.; Le T.H.; Park C.S.; Choi Y.; Kim S.; Lee U.; Heo E.; Lee H.; Kim Y.A.; Kwon O.S.; Yoon H.; Anomalous restoration of sp hybridization in graphene functionalization. Nanoscale 2020,12(25),13351-13359 [DOI: 10.1039/D0NR03422C]
Sidorov A.N.; Yazdanpanah M.M.; Jalilian R.; Ouseph P.J.; Cohn R.W.; Sumanasekera G.U.; Electrostatic deposition of graphene. Nanotechnology 2007,18(13),135301 [DOI: 10.1088/0957-4484/18/13/135301]
Seema H.; Shirinfar B.; Shi G.; Youn I.S.; Ahmed N.; Facile synthesis of a selective biomolecule chemosensor and fabrication of its highly fluorescent graphene complex. J Phys Chem B 2017,121(19),5007-5016 [DOI: 10.1021/acs.jpcb.7b02888]
Goldoni R.; Farronato M.; Connelly S.T.; Tartaglia G.M.; Yeo W.H.; Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens Bioelectron 2021,171,112723 [DOI: 10.1016/j.bios.2020.112723]
Meng Q.; Yu Y.; Tian J.; Yang Z.; Guo S.; Cai R.; Han S.; Liu T.; Ma J.; Multifunctional, durable and highly conductive graphene/sponge nanocomposites. Nanotechnology 2020,31(46),465502 [DOI: 10.1088/1361-6528/ab9f73]
Zhang Z.Z.; Song X.X.; Luo G.; Su Z.J.; Wang K.L.; Cao G.; Li H.O.; Xiao M.; Guo G.C.; Tian L.; Deng G.W.; Guo G.P.; Coherent phonon dynamics in spatially separated graphene mechanical resonators. Proc Natl Acad Sci 2020,117(11),5582-5587 [DOI: 10.1073/pnas.1916978117]
Mahajan C.R.; Joshi L.B.; Varma U.; Naik J.B.; Chaudhari V.R.; Mishra S.; Sustainable drug delivery of famotidine using chitosan-functionalized graphene oxide as nanocarrier. Glob Chall 2019,3(10),1900002 [DOI: 10.1002/gch2.201900002]
Prabowo B.A.; Purwidyantri A.; Liu B.; Lai H.C.; Liu K.C.; Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Nanotechnology 2021,32(9),095503 [DOI: 10.1088/1361-6528/abcd62]
Nejabat M.; Charbgoo F.; Ramezani M.; Graphene as multifunctional delivery platform in cancer therapy. J Biomed Mater Res A 2017,105(8),2355-2367 [DOI: 10.1002/jbm.a.36080]
Gholivand K.; Faraghi M.; Pooyan M.; Babaee L.S.; Malekshah R.E.; Pirastehfar F.; Vahabirad M.; Anti-cancer activity of new phosphoramide-functionalized graphene oxides: An experimental and theoretical evaluation. Curr Med Chem 2023,30(30),3486-3503 [DOI: 10.2174/0929867330666221027152716]
Keramat A.; Kadkhoda J.; Farahzadi R.; Fathi E.; Davaran S.; The potential of graphene oxide and reduced graphene oxide in diagnosis and treatment of cancer. Curr Med Chem 2022,29(26),4529-4546 [DOI: 10.2174/0929867329666220208092157]
Pedrosa M.; Da Silva E.S.; Pastrana-Martínez L.M.; Drazic G.; Falaras P.; Faria J.L.; Figueiredo J.L.; Silva A.M.T.; Hummers’ and Brodie’s graphene oxides as photocatalysts for phenol degradation. J Colloid Interface Sci 2020,567,243-255 [DOI: 10.1016/j.jcis.2020.01.093]
Patel M.A.; Yang H.; Chiu P.L.; Mastrogiovanni D.D.T.; Flach C.R.; Savaram K.; Gomez L.; Hemnarine A.; Mendelsohn R.; Garfunkel E.; Jiang H.; He H.; Direct production of graphene nanosheets for near infrared photoacoustic imaging. ACS Nano 2013,7(9),8147-8157 [DOI: 10.1021/nn403429v]
Peng L.; Xu Z.; Liu Z.; Wei Y.; Sun H.; Li Z.; Zhao X.; Gao C.; An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 2015,6(1),5716 [DOI: 10.1038/ncomms6716]
Kim F.; Luo J.; Cruz-Silva R.; Cote L.J.; Sohn K.; Huang J.; Self-propagating domino-like reactions in oxidized graphite. Adv Funct Mater 2010,20(17),2867-2873 [DOI: 10.1002/adfm.201000736]
Zheng F.; Xu W.L.; Jin H.D.; Zhu M.Q.; Yuan W.H.; Hao X.T.; Ghiggino K.P.; Purified dispersions of graphene in a nonpolar solvent via solvothermal reduction of graphene oxide. Chem Commun 2015,51(18),3824-3827 [DOI: 10.1039/C5CC00056D]
Balaji A.; Zhang J.; Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol 2017,8(1),10 [DOI: 10.1186/s12645-017-0035-z]
Abdelbasset W.K.; Jasim S.A.; Bokov D.O.; Oleneva M.S.; Islamov A.; Hammid A.T.; Mustafa Y.F.; Yasin G.; Alguno A.C.; Kianfar E.; Comparison and evaluation of the performance of graphene-based biosensors. Carbon Letters 2022,32(4),927-951 [DOI: 10.1007/s42823-022-00338-6]
Işın D.; Eksin E.; Erdem A.; Graphene-oxide and ionic liquid modified electrodes for electrochemical sensing of breast cancer 1 gene. Biosensors 2022,12(2),95 [DOI: 10.3390/bios12020095]
Luong J.H.T.; Vashist S.K.; Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites. Biosens Bioelectron 2017,89(Pt 1),293-304 [DOI: 10.1016/j.bios.2015.11.053]
Chen S.L.; Chen C.Y.; Hsieh J.C.H.; Yu Z.Y.; Cheng S.J.; Hsieh K.Y.; Yang J.W.; Kumar P.V.; Lin S.F.; Chen G.Y.; Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis. Nanomaterials 2019,9(12),1725 [DOI: 10.3390/nano9121725]
Qian W.; Miao Z.; Zhang X.J.; Yang X.T.; Tang Y.Y.; Tang Y.Y.; Hu L.Y.; Li S.; Zhu D.; Cheng H.; Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection. Mikrochim Acta 2020,187(7),407 [DOI: 10.1007/s00604-020-04402-8]
Papi M.; Palmieri V.; Digiacomo L.; Giulimondi F.; Palchetti S.; Ciasca G.; Perini G.; Caputo D.; Cartillone M.C.; Cascone C.; Coppola R.; Capriotti A.L.; Laganà A.; Pozzi D.; Caracciolo G.; Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale 2019,11(32),15339-15346 [DOI: 10.1039/C9NR01413F]
Wu C.; Li P.; Fan N.; Han J.; Zhang W.; Zhang W.; Tang B.; A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells. ACS Appl Mater Interfaces 2019,11(48),44999-45006 [DOI: 10.1021/acsami.9b18410]
Geetha Bai R.; Muthoosamy K.; Tuvikene R.; Nay Ming H.; Manickam S.; Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials 2021,11(5),1272 [DOI: 10.3390/nano11051272]
Mahmoodi P.; Rezayi M.; Rasouli E.; Avan A.; Gholami M.; Ghayour Mobarhan M.; Karimi E.; Alias Y.; Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J Nanobiotechnol 2020,18(1),11 [DOI: 10.1186/s12951-020-0577-9]
Shi S.; Yang K.; Hong H.; Valdovinos H.F.; Nayak T.R.; Zhang Y.; Theuer C.P.; Barnhart T.E.; Liu Z.; Cai W.; Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials 2013,34(12),3002-3009 [DOI: 10.1016/j.biomaterials.2013.01.047]
Xu H.; Fan M.; Elhissi A.M.A.; Zhang Z.; Wan K.W.; Ahmed W.; Phoenix D.A.; Sun X.; PEGylated graphene oxide for tumor-targeted delivery of paclitaxel. Nanomedicine 2015,10(8),1247-1262 [DOI: 10.2217/nnm.14.233]
Lan M.Y.; Hsu Y.B.; Lan M.C.; Chen J.P.; Lu Y.J.; Polyethylene glycol-coated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells. Int J Nanomedicine 2020,15,7569-7582 [DOI: 10.2147/IJN.S265437]
Shuai C.; Wang B.; Bin S.; Peng S.; Gao C.; TiO -induced in situ reaction in graphene oxide-reinforced az61 biocomposites to enhance the interfacial bonding. ACS Appl Mater Interfaces 2020,12(20),23464-23473 [DOI: 10.1021/acsami.0c04020]
Alibolandi M.; Mohammadi M.; Taghdisi S.M.; Ramezani M.; Abnous K.; Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr Polym 2017,155,218-229 [DOI: 10.1016/j.carbpol.2016.08.046]
Gu Y.; Guo Y.; Wang C.; Xu J.; Wu J.; Kirk T.B.; Ma D.; Xue W.; A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater Sci Eng C 2017,70(Pt 1),572-585 [DOI: 10.1016/j.msec.2016.09.035]
Slekiene N.; Snitka V.; Impact of graphene oxide functionalized with doxorubicin on viability of mouse hepatoma MH-22A cells. Toxicol In Vitro 2020,65,104821 [DOI: 10.1016/j.tiv.2020.104821]
Zhang Y.M.; Cao Y.; Yang Y.; Chen J.T.; Liu Y.; A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chem Commun 2014,50(86),13066-13069 [DOI: 10.1039/C4CC04533E]
Kansara V.; Patil R.; Tripathi R.; Jha P.K.; Bahadur P.; Tiwari S.; Functionalized graphene nanosheets with improved dispersion stability and superior paclitaxel loading capacity. Colloids Surf B Biointerfaces 2019,173,421-428 [DOI: 10.1016/j.colsurfb.2018.10.016]
Yang Y.F.; Meng F.Y.; Li X.H.; Wu N.N.; Deng Y.H.; Wei L.Y.; Zeng X.P.; Magnetic graphene oxide-FeO-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J Nanosci Nanotechnol 2019,19(12),7517-7525 [DOI: 10.1166/jnn.2019.16768]
Lin K.C.; Lin M.W.; Hsu M.N.; Yu-Chen G.; Chao Y.C.; Tuan H.Y.; Chiang C.S.; Hu Y.C.; Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Theranostics 2018,8(9),2477-2487 [DOI: 10.7150/thno.24173]
Lu Y.J.; Lan Y.H.; Chuang C.C.; Lu W.T.; Chan L.Y.; Hsu P.W.; Chen J.P.; Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy. Int J Mol Sci 2020,21(19),7111 [DOI: 10.3390/ijms21197111]
Liu X.; Gao M.M.; Cheng Z.; Cai Z-K.; Yu L.; Niu G-M.; Li J-Y.; Bai Y.; Zhao S-Z.; Song Y-C.; Wang X-G.; Dong Y.; Yu X.; Tao Z.; Yuan Z-Y.; Stereotactic body radiotherapy compared with video-assisted thoracic surgery after propensity-score matching in elderly patients with pathologically-proven early-stage non-small cell lung cancer. Precis Radiat Oncol 2022,6(4),279-288 [DOI: 10.1002/pro6.1175]
Toomeh D.; Gadoue S.M.; Yasmin-Karim S.; Singh M.; Shanker R.; Pal Singh S.; Kumar R.; Sajo E.; Ngwa W.; Minimizing the potential of cancer recurrence and metastasis by the use of graphene oxide nano-flakes released from smart fiducials during image-guided radiation therapy. Phys Med 2018,55,8-14 [DOI: 10.1016/j.ejmp.2018.10.001]
Kadkhoda J.; Tarighatnia A.; Barar J.; Aghanejad A.; Davaran S.; Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagn Photodyn Ther 2022,37,102697 [DOI: 10.1016/j.pdpdt.2021.102697]
Ma M.; Cheng L.; Zhao A.; Zhang H.; Zhang A.; Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagn Photodyn Ther 2020,29,101640 [DOI: 10.1016/j.pdpdt.2019.101640]
Das P.; Mudigunda S.V.; Darabdhara G.; Boruah P.K.; Ghar S.; Rengan A.K.; Das M.R.; Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. J Photochem Photobiol B 2020,212,112028 [DOI: 10.1016/j.jphotobiol.2020.112028]
Gulzar A.; Xu J.; Yang D.; Xu L.; He F.; Gai S.; Yang P.; Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans 2018,47(11),3931-3939 [DOI: 10.1039/C7DT04141A]
Liu P.; Xie X.; Liu M.; Hu S.; Ding J.; Zhou W.; A smart MnO-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm Sin B 2021,11(3),823-834 [DOI: 10.1016/j.apsb.2020.07.021]
Guo W.; Chen Z.; Feng X.; Shen G.; Huang H.; Liang Y.; Zhao B.; Li G.; Hu Y.; Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J Nanobiotechnol 2021,19(1),146 [DOI: 10.1186/s12951-021-00874-9]
Zeng W.N.; Yu Q.P.; Wang D.; Liu J.L.; Yang Q.J.; Zhou Z.K.; Zeng Y.P.; Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J Nanobiotechnol 2021,19(1),79 [DOI: 10.1186/s12951-021-00831-6]
Zhao C.; Song X.; Liu Y.; Fu Y.; Ye L.; Wang N.; Wang F.; Li L.; Mohammadniaei M.; Zhang M.; Zhang Q.; Liu J.; Synthesis of graphene quantum dots and their applications in drug delivery. J Nanobiotechnol 2020,18(1),142 [DOI: 10.1186/s12951-020-00698-z]
Vatanparast M.; Shariatinia Z.; Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: A combined density functional theory and molecular dynamics approach. J Mater Chem B Mater Biol Med 2019,7(40),6156-6171 [DOI: 10.1039/C9TB00971J]
Singh G.; Kaur H.; Sharma A.; Singh J.; Alajangi H.K.; Kumar S.; Singla N.; Kaur I.P.; Barnwal R.P.; Carbon based nanodots in early diagnosis of cancer. Front Chem 2021,9,669169 [DOI: 10.3389/fchem.2021.669169]
Cunci L.; González-Colón V.; Lee Vargas-Pérez B.; Ortiz-Santiago J.; Pagán M.; Carrion P.; Cruz J.; Molina-Ontoria A.; Martinez N.; Silva W.; Echegoyen L.; Cabrera C.R.; Multicolor fluorescent graphene oxide quantum dots for sensing cancer cell biomarkers. ACS Appl Nano Mater 2021,4(1),211-219 [DOI: 10.1021/acsanm.0c02526]
Xu A.; He P.; Ye C.; Liu Z.; Gu B.; Gao B.; Li Y.; Dong H.; Chen D.; Wang G.; Yang S.; Ding G.; Polarizing graphene quantum dots toward long-acting intracellular reactive oxygen species evaluation and tumor detection. ACS Appl Mater Interfaces 2020,12(9),10781-10790 [DOI: 10.1021/acsami.9b20434]
Ganganboina A.B.; Dega N.K.; Tran H.L.; Darmonto W.; Doong R.A.; Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens Bioelectron 2021,181,113151 [DOI: 10.1016/j.bios.2021.113151]
Pothipor C.; Jakmunee J.; Bamrungsap S.; Ounnunkad K.; An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst 2021,146(12),4000-4009 [DOI: 10.1039/D1AN00436K]
Zhang H.; Ba S.; Yang Z.; Wang T.; Lee J.Y.; Li T.; Shao F.; Graphene quantum dot-based nanocomposites for diagnosing cancer biomarker ape1 in living cells. ACS Appl Mater Interfaces 2020,12(12),13634-13643 [DOI: 10.1021/acsami.9b21385]
Marko A.J.; Borah B.M.; Siters K.E.; Missert J.R.; Gupta A.; Pera P.; Isaac-Lam M.F.; Pandey R.K.; Targeted nanoparticles for fluorescence imaging of folate receptor positive tumors. Biomolecules 2020,10(12),1651 [DOI: 10.3390/biom10121651]
Assaraf Y.G.; Leamon C.P.; Reddy J.A.; The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat 2014,17(4-6),89-95 [DOI: 10.1016/j.drup.2014.10.002]
Feng S.; Pan J.; Li C.; Zheng Y.; Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells. Nanotechnology 2020,31(13),135701 [DOI: 10.1088/1361-6528/ab5f7f]
Liu H.; Li C.; Qian Y.; Hu L.; Fang J.; Tong W.; Nie R.; Chen Q.; Wang H.; Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials 2020,232,119700 [DOI: 10.1016/j.biomaterials.2019.119700]
Dharmaratne N.U.; Kaplan A.R.; Glazer P.M.; Targeting the hypoxic and acidic tumor microenvironment with ph-sensitive peptides. Cells 2021,10(3),541 [DOI: 10.3390/cells10030541]
Fang J.; Liu Y.; Chen Y.; Ouyang D.; Yang G.; Yu T.; Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int J Nanomedicine 2018,13,5991-6007 [DOI: 10.2147/IJN.S175934]
Khodadadei F.; Safarian S.; Ghanbari N.; Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Mater Sci Eng C 2017,79,280-285 [DOI: 10.1016/j.msec.2017.05.049]
Wei Z.; Yin X.; Cai Y.; Xu W.; Song C.; Wang Y.; Zhang J.; Kang A.; Wang Z.; Han W.; Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int J Nanomedicine 2018,13,1505-1524 [DOI: 10.2147/IJN.S156984]
Nasrollahi F.; Koh Y.R.; Chen P.; Varshosaz J.; Khodadadi A.A.; Lim S.; Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater Sci Eng C 2019,94,247-257 [DOI: 10.1016/j.msec.2018.09.020]
Iannazzo D.; Pistone A.; Salamò M.; Galvagno S.; Romeo R.; Giofré S.V.; Branca C.; Visalli G.; Di Pietro A.; Graphene quantum dots for cancer targeted drug delivery. Int J Pharm 2017,518(1-2),185-192 [DOI: 10.1016/j.ijpharm.2016.12.060]
Nigam Joshi P.; Agawane S.; Athalye M.C.; Jadhav V.; Sarkar D.; Prakash R.; Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater Sci Eng C 2017,78,1203-1211 [DOI: 10.1016/j.msec.2017.03.176]
Au T.H.; Nguyen B.N.; Nguyen P.H.; Pethe S.; Vo-Thanh G.; Vu Thi T.H.; Vinblastine loaded on graphene quantum dots and its anticancer applications. J Microencapsul 2022,39(3),239-251 [DOI: 10.1080/02652048.2022.2060361]
Ramedani A.; Sabzevari O.; Simchi A.; Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment. Int J Pharm 2022,629,122373 [DOI: 10.1016/j.ijpharm.2022.122373]
Yu C.X.; Radiotherapy of early-stage breast cancer. Precis Radiat Oncol 2023,7(1),67-79 [DOI: 10.1002/pro6.1183]
Esgandari K.; Mohammadian M.; Zohdiaghdam R.; Rastin S.J.; Alidadi S.; Behrouzkia Z.; Combined treatment with silver graphene quantum dot, radiation, and 17-AAG induces anticancer effects in breast cancer cells. J Cell Physiol 2021,236(4),2817-2828 [DOI: 10.1002/jcp.30046]
Reagen S.; Wu Y.; Sun D.; Munoz C.; Oncel N.; Combs C.; Zhao J.X.; Development of biodegradable GQDs-hMSNs for fluorescence imaging and dual cancer treatment via photodynamic therapy and drug delivery. Int J Mol Sci 2022,23(23),14931 [DOI: 10.3390/ijms232314931]
Ostańska E.; Aebisher D.; Bartusik-Aebisher D.; The potential of photodynamic therapy in current breast cancer treatment methodologies. Biomed Pharmacother 2021,137,111302 [DOI: 10.1016/j.biopha.2021.111302]
Cao H.; Fang B.; Liu J.; Shen Y.; Shen J.; Xiang P.; Zhou Q.; De Souza S.C.; Li D.; Tian Y.; Luo L.; Zhang Z.; Tian X.; Photodynamic therapy directed by three-photon active rigid plane organic photosensitizer. Adv Healthc Mater 2021,10(7),2001489 [DOI: 10.1002/adhm.202001489]
Kwiatkowski S.; Knap B.; Przystupski D.; Saczko J.; Kędzierska E.; Knap-Czop K.; Kotlińska J.; Michel O.; Kotowski K.; Kulbacka J.; Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018,106,1098-1107 [DOI: 10.1016/j.biopha.2018.07.049]
Chen L.; Liu D.; Wu M.; Chau H.F.; Wang K.; Fung Y.H.; Wong K.L.; Wang Z.; Wu F.; Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization. Nanotechnology 2020,31(31),315101 [DOI: 10.1088/1361-6528/ab86ea]
Zou Z.; Chang H.; Li H.; Wang S.; Induction of reactive oxygen species: An emerging approach for cancer therapy. Apoptosis 2017,22(11),1321-1335 [DOI: 10.1007/s10495-017-1424-9]
Hamblin M.R.; Abrahamse H.; Factors affecting photodynamic therapy and anti-tumor immune response. Anticancer Agents Med Chem 2020,21(2),123-136 [DOI: 10.2174/1871520620666200318101037]
He S.; Li J.; Chen M.; Deng L.; Yang Y.; Zeng Z.; Xiong W.; Wu X.; Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy. Int J Nanomedicine 2020,15,8451-8463 [DOI: 10.2147/IJN.S265134]
Neelgund G.M.; Oki A.R.; Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J Colloid Interface Sci 2016,484,135-145 [DOI: 10.1016/j.jcis.2016.07.078]
Shi J.; Zhao Z.; Liu Z.; Wu R.; Wang Y.; Ultralow-intensity NIR light triggered on-demand drug release by employing highly emissive UCNP and photocleavable linker with low bond dissociation energy. Int J Nanomedicine 2019,14,4017-4028 [DOI: 10.2147/IJN.S201982]
Han R.; Tang K.; Hou Y.; Yu J.; Wang C.; Wang Y.; Ultralow-intensity near infrared light synchronously activated collaborative chemo/photothermal/photodynamic therapy. Biomater Sci 2020,8(2),607-618 [DOI: 10.1039/C9BM01607D]
Lu H.; Li W.; Qiu P.; Zhang X.; Qin J.; Cai Y.; Lu X.; MnO doped graphene nanosheets for carotid body tumor combination therapy. Nanoscale Adv 2022,4(20),4304-4313 [DOI: 10.1039/D2NA00086E]
Yu T.; Hu Y.; Feng G.; Hu K.; Noninvasive tumor therapy: A graphene-based flexible device as a specific far-infrared emitter for noninvasive tumor therapy. Adv Ther 2020,3(3),2070005 [DOI: 10.1002/adtp.202070005]
Shi J.; Wang B.; Chen Z.; Liu W.; Pan J.; Hou L.; Zhang Z.; A multi-functional tumor theranostic nanoplatform for mri guided photothermal-chemotherapy. Pharm Res 2016,33(6),1472-1485 [DOI: 10.1007/s11095-016-1891-7]
Khan H.A.; Lee Y.K.; Shaik M.R.; Alrashood S.T.; Ekhzaimy A.A.; Nanocomposites of nitrogen-doped graphene oxide and manganese oxide for photodynamic therapy and magnetic resonance imaging. Int J Mol Sci 2022,23(23),15087 [DOI: 10.3390/ijms232315087]
Zhou C.; Wu H.; Wang M.; Huang C.; Yang D.; Jia N.; Functionalized graphene oxide/FeO hybrids for cellular magnetic resonance imaging and fluorescence labeling. Mater Sci Eng C 2017,78,817-825 [DOI: 10.1016/j.msec.2017.04.139]
Gonzalez-Rodriguez R.; Campbell E.; Naumov A.; Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One 2019,14(6),e0217072 [DOI: 10.1371/journal.pone.0217072]
Yang Y.; Chen S.; Li H.; Yuan Y.; Zhang Z.; Xie J.; Hwang D.W.; Zhang A.; Liu M.; Zhou X.; Engineered paramagnetic graphene quantum dots with enhanced relaxivity for tumor imaging. Nano Lett 2019,19(1),441-448 [DOI: 10.1021/acs.nanolett.8b04252]
Luo Y.; Tang Y.; Liu T.; Chen Q.; Zhou X.; Wang N.; Ma M.; Cheng Y.; Chen H.; Engineering graphene oxide with ultrasmall SPIONs and smart drug release for cancer theranostics. Chem Commun 2019,55(13),1963-1966 [DOI: 10.1039/C8CC09185D]
Zhang G.; Du R.; Qian J.; Zheng X.; Tian X.; Cai D.; He J.; Wu Y.; Huang W.; Wang Y.; Zhang X.; Zhong K.; Zou D.; Wu Z.; A tailored nanosheet decorated with a metallized dendrimer for angiography and magnetic resonance imaging-guided combined chemotherapy. Nanoscale 2018,10(1),488-498 [DOI: 10.1039/C7NR07957E]
Cao J.; An H.; Huang X.; Fu G.; Zhuang R.; Zhu L.; Xie J.; Zhang F.; Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. Nanoscale 2016,8(19),10152-10159 [DOI: 10.1039/C6NR02012G]
Wang C.; Ravi S.; Garapati U.S.; Das M.; Howell M.; Mallela J.; Alwarappan S.; Mohapatra S.S.; Mohapatra S.; Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J Mater Chem B Mater Biol Med 2013,1(35),4396-4405 [DOI: 10.1039/c3tb20452a]
Son S.; Kim J.H.; Wang X.; Zhang C.; Yoon S.A.; Shin J.; Sharma A.; Lee M.H.; Cheng L.; Wu J.; Kim J.S.; Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev 2020,49(11),3244-3261 [DOI: 10.1039/C9CS00648F]
Costley D.; Mc Ewan C.; Fowley C.; McHale A.P.; Atchison J.; Nomikou N.; Callan J.F.; Treating cancer with sonodynamic therapy: A review. Int J Hyperthermia 2015,31(2),107-117 [DOI: 10.3109/02656736.2014.992484]
Ninomiya K.; Noda K.; Ogino C.; Kuroda S.; Shimizu N.; Enhanced OH radical generation by dual-frequency ultrasound with TiO nanoparticles: Its application to targeted sonodynamic therapy. Ultrason Sonochem 2014,21(1),289-294 [DOI: 10.1016/j.ultsonch.2013.05.005]
Yumita N.; Iwase Y.; Umemura S.I.; Chen F.S.; Momose Y.; Sonodynamically-induced anticancer effects of polyethylene glycol-modified carbon nano tubes. Anticancer Res 2020,40(5),2549-2557 [DOI: 10.21873/anticanres.14225]
Milowska K.; Ultrasound--mechanisms of action and application in sonodynamic therapy. Postepy Hig Med Dosw 2007,61,338-349
Lafond M.; Yoshizawa S.; Umemura S.; Sonodynamic therapy: Advances and challenges in clinical translation. J Ultrasound Med 2019,38(3),567-580 [DOI: 10.1002/jum.14733]
Sun H.; Ge W.; Gao X.; Wang S.; Jiang S.; Hu Y.; Yu M.; Hu S.; Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer. PLoS One 2015,10(9),e0137980 [DOI: 10.1371/journal.pone.0137980]
Liang S.; Deng X.; Ma P.; Cheng Z.; Lin J.; Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv Mater 2020,32(47),2003214 [DOI: 10.1002/adma.202003214]
Roberts J.E.; Techniques to improve photodynamic therapy. Photochem Photobiol 2020,96(3),524-528 [DOI: 10.1111/php.13223]
Cheng D.; Wang X.; Zhou X.; Li J.; Nanosonosensitizers with ultrasound-induced reactive oxygen species generation for cancer sonodynamic immunotherapy. Front Bioeng Biotechnol 2021,9,761218 [DOI: 10.3389/fbioe.2021.761218]
Huang J.; Xiao Z.; An Y.; Han S.; Wu W.; Wang Y.; Guo Y.; Shuai X.; Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. Biomaterials 2021,269,120636 [DOI: 10.1016/j.biomaterials.2020.120636]
Zhang Q.; Bao C.; Cai X.; Jin L.; Sun L.; Lang Y.; Li L.; Sonodynamic therapy-assisted immunotherapy: A novel modality for cancer treatment. Cancer Sci 2018,109(5),1330-1345 [DOI: 10.1111/cas.13578]
Gu Z.; Zhu S.; Yan L.; Zhao F.; Zhao Y.; Graphene-based smart platforms for combined cancer therapy. Adv Mater 2019,31(9),1800662 [DOI: 10.1002/adma.201800662]
Fusco L.; Gazzi A.; Peng G.; Shin Y.; Vranic S.; Bedognetti D.; Vitale F.; Yilmazer A.; Feng X.; Fadeel B.; Casiraghi C.; Delogu L.G.; Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020,10(12),5435-5488 [DOI: 10.7150/thno.40068]
Dai C.; Zhang S.; Liu Z.; Wu R.; Chen Y.; Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano 2017,11(9),9467-9480 [DOI: 10.1021/acsnano.7b05215]
Chen Y.W.; Liu T.Y.; Chang P.H.; Hsu P.H.; Liu H.L.; Lin H.C.; Chen S.Y.; A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale 2016,8(25),12648-12657 [DOI: 10.1039/C5NR07782F]
Lee H.R.; Kim D.W.; Jones V.O.; Choi Y.; Ferry V.E.; Geller M.A.; Azarin S.M.; Sonosensitizer-functionalized graphene nanoribbons for adhesion blocking and sonodynamic ablation of ovarian cancer spheroids. Adv Healthc Mater 2021,10(13),2001368 [DOI: 10.1002/adhm.202001368]
Qin D.; Zou Q.; Lei S.; Wang W.; Li Z.; Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues. Ultrason Sonochem 2021,78,105712 [DOI: 10.1016/j.ultsonch.2021.105712]
Shen Z.Y.; Jiang Y.M.; Zhou Y.F.; High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound. Ultrason Sonoch 2018,40((Pt A)),980-987 [DOI: 10.1016/j.ultsonch.2017.09.015]
Kooiman K.; Roovers S.; Langeveld S.A.G.; Kleven R.T.; Dewitte H.; O’Reilly M.A.; Escoffre J.M.; Bouakaz A.; Verweij M.D.; Hynynen K.; Lentacker I.; Stride E.; Holland C.K.; Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med Biol 2020,46(6),1296-1325 [DOI: 10.1016/j.ultrasmedbio.2020.01.002]
Shen Z.; Shao J.; Zhang J.; Qu W.; Ultrasound cavitation enhanced chemotherapy: In vivo research and clinical application. Exp Biol Med 2020,245(14),1200-1212 [DOI: 10.1177/1535370220936150]
Sontakke A.D.; Purkait M.K.; Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls. Ultrason Sonochem 2020,63,104976 [DOI: 10.1016/j.ultsonch.2020.104976]
Silva L.I.; Mirabella D.A.; Pablo Tomba J.; Riccardi C.C.; Optimizing graphene production in ultrasonic devices. Ultrasonics 2020,100,105989 [DOI: 10.1016/j.ultras.2019.105989]
Zhao W.; Li M.; Qi Y.; Tao Y.; Shi Z.; Liu Y.; Cheng J.; Ultrasound sonochemical synthesis of amorphous SbS-graphene composites for sodium-ion batteries. J Colloid Interface Sci 2021,586,404-411 [DOI: 10.1016/j.jcis.2020.10.104]
Štengl V.; Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chemistry 2012,18(44),14047-14054 [DOI: 10.1002/chem.201201411]
Geetha Bai R.; Muthoosamy K.; Shipton F.N.; Manickam S.; Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells. Ultrason Sonochem 2017,36,129-138 [DOI: 10.1016/j.ultsonch.2016.11.021]
Gao H.; Xue C.; Hu G.; Zhu K.; Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO/HO medium. Ultrason Sonochem 2017,37,120-127 [DOI: 10.1016/j.ultsonch.2017.01.001]
Zhou Y.; Yang K.; Cui J.; Ye J.Y.; Deng C.X.; Controlled permeation of cell membrane by single bubble acoustic cavitation. J Control Release 2012,157(1),103-111 [DOI: 10.1016/j.jconrel.2011.09.068]
Lentacker I.; De Cock I.; Deckers R.; De Smedt S.C.; Moonen C.T.W.; Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv Drug Deliv Rev 2014,72,49-64 [DOI: 10.1016/j.addr.2013.11.008]
Yang Y.; Li Q.; Guo X.; Tu J.; Zhang D.; Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrason Sonochem 2020,67,105096 [DOI: 10.1016/j.ultsonch.2020.105096]
Daigeler A.; Chromik A.M.; Haendschke K.; Emmelmann S.; Siepmann M.; Hensel K.; Schmitz G.; Klein-Hitpass L.; Steinau H.U.; Lehnhardt M.; Hauser J.; Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma. Ultrasound Med Biol 2010,36(11),1893-1906 [DOI: 10.1016/j.ultrasmedbio.2010.08.009]
Shen Z.Y.; Xia G.L.; Wu M.F.; Ji L.Y.; Li Y.J.; The effects of percutaneous ethanol injection followed by 20-kHz ultrasound and microbubbles on rabbit hepatic tumors. J Cancer Res Clin Oncol 2016,142(2),373-378 [DOI: 10.1007/s00432-015-2034-y]
Zhou Q.; Shao S.; Wang J.; Xu C.; Xiang J.; Piao Y.; Zhou Z.; Yu Q.; Tang J.; Liu X.; Gan Z.; Mo R.; Gu Z.; Shen Y.; Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat Nanotechnol 2019,14(8),799-809 [DOI: 10.1038/s41565-019-0485-z]
Rizwanullah M.; Alam M.; Harshita ; Mir S.R.; Rizvi M.M.A.; Amin S.; Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr Pharm Des 2020,26(11),1206-1215 [DOI: 10.2174/1381612826666200116150426]
Yu Z.; Guo J.; Hu M.; Gao Y.; Huang L.; Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano 2020,14(4),4816-4828 [DOI: 10.1021/acsnano.0c00708]
Cao C.; Wang Q.; Liu Y.; Lung cancer combination therapy: Doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers. Drug Des Devel Ther 2019,13,1087-1098 [DOI: 10.2147/DDDT.S198003]
Luo S.; Zhu Y.; Li Y.; Chen L.; Lv S.; Zhang Y.; Ge L.; Zhou W.; Targeted chemotherapy for breast cancer using an intelligent doxorubicin-loaded hexapeptide hydrogel. J Biomed Nanotechnol 2020,16(6),842-852 [DOI: 10.1166/jbn.2020.2935]
Benjanuwattra J.; Siri-Angkul N.; Chattipakorn S.C.; Chattipakorn N.; Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacol Res 2020,151,104542 [DOI: 10.1016/j.phrs.2019.104542]
Zhang L.; Qu X.; Teng Y.; Shi J.; Yu P.; Sun T.; Wang J.; Zhu Z.; Zhang X.; Zhao M.; Liu J.; Jin B.; Luo Y.; Teng Z.; Dong Y.; Wen F.; An Y.; Yuan C.; Chen T.; Zhou L.; Chen Y.; Zhang J.; Wang Z.; Qu J.; Jin F.; Zhang J.; Jin X.; Xie X.; Wang J.; Man L.; Fu L.; Liu Y.; Efficacy of thalidomide in preventing delayed nausea and vomiting induced by highly emetogenic chemotherapy: A randomized, multicenter, double-blind, placebo-controlled phase III trial (CLOG1302 study). J Clin Oncol 2017,35(31),3558-3565 [DOI: 10.1200/JCO.2017.72.2538]
Vargel I.; Erdem A.; Ertoy D.; Pinar A.; Erk Y.; Altundag M.K.; Gullu I.; Effects of growth factors on doxorubicin-induced skin necrosis: Documentation of histomorphological alterations and early treatment by GM-CSF and G-CSF. Ann Plast Surg 2002,49(6),646-653 [DOI: 10.1097/00000637-200212000-00015]
Liu Y.; Qiao L.; Zhang S.; Wan G.; Chen B.; Zhou P.; Zhang N.; Wang Y.; Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater 2018,66,310-324 [DOI: 10.1016/j.actbio.2017.11.010]
Dong K.; Zhao Z.Z.; Kang J.; Lin L.R.; Chen W.T.; Liu J.X.; Wu X.L.; Lu T.L.; Cinnamaldehyde and doxorubicin co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int J Nanomedicine 2020,15,10285-10304 [DOI: 10.2147/IJN.S283981]
Zhang J.; Chen L.; Shen B.; Chen L.; Mo J.; Feng J.; Dual-sensitive graphene oxide loaded with proapoptotic peptides and anticancer drugs for cancer synergetic therapy. Langmuir 2019,35(18),6120-6128 [DOI: 10.1021/acs.langmuir.9b00611]
Singh M.; Gupta P.; Baronia R.; In vitro cytotoxicity of GO-DOx on FaDu squamous carcinoma cell lines. Int J Nanomedicine 2018,13,107-111
Fong Y.; Chen C.H.; Chen J.P.; Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials 2017,7(11),388 [DOI: 10.3390/nano7110388]
Ziemys A.; Yokoi K.; Kojic M.; Capillary collagen as the physical transport barrier in drug delivery to tumor microenvironment. Tissue Barriers 2015,3(3),e1037418 [DOI: 10.1080/21688370.2015.1037418]
Shen Z.Y.; Shen B.Q.; Shen A.J.; Zhu X.H.; Cavitation-enhanced delivery of the nanomaterial graphene oxide-doxorubicin to hepatic tumors in nude mice using 20 khz low-frequency ultrasound and microbubbles. J Nanomater 2020,2020(24),1-13 [DOI: 10.1155/2020/3136078]
Liao C.; Li Y.; Tjong S.; Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci 2018,19(11),3564 [DOI: 10.3390/ijms19113564]
Zhang B.; Wei P.; Zhou Z.; Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv Drug Deliv Rev 2016,105((Pt B)),145-162
Russier J.; Treossi E.; Scarsi A.; Perrozzi F.; Dumortier H.; Ottaviano L.; Meneghetti M.; Palermo V.; Bianco A.; Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale 2013,5(22),11234-11247 [DOI: 10.1039/c3nr03543c]
Mendes R.G.; Koch B.; Bachmatiuk A.; Ma X.; Sanchez S.; Damm C.; Schmidt O.G.; Gemming T.; Eckert J.; Rümmeli M.H.; A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B Mater Biol Med 2015,3(12),2522-2529 [DOI: 10.1039/C5TB00180C]
Wojtoniszak M.; Chen X.; Kalenczuk R.J.; Wajda A.; Łapczuk J.; Kurzewski M.; Drozdzik M.; Chu P.K.; Borowiak-Palen E.; Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf B Biointerfaces 2012,89,79-85 [DOI: 10.1016/j.colsurfb.2011.08.026]
Matesanz M.C.; Vila M.; Feito M.J.; Linares J.; Gonçalves G.; Vallet-Regi M.; Marques P.A.A.P.; Portolés M.T.; The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials 2013,34(5),1562-1569 [DOI: 10.1016/j.biomaterials.2012.11.001]
Akhavan O.; Ghaderi E.; Akhavan A.; Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 2012,33(32),8017-8025 [DOI: 10.1016/j.biomaterials.2012.07.040]
Wu Y.; Wang F.; Wang S.; Ma J.; Xu M.; Gao M.; Liu R.; Chen W.; Liu S.; Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale 2018,10(30),14637-14650 [DOI: 10.1039/C8NR02798F]
Dasgupta A.; Sarkar J.; Ghosh M.; Bhattacharya A.; Mukherjee A.; Chattopadhyay D.; Acharya K.; Green conversion of graphene oxide to graphene nanosheets and its biosafety study. PLoS One 2017,12(2),e0171607 [DOI: 10.1371/journal.pone.0171607]
Palmieri V.; Perini G.; De Spirito M.; Papi M.; Graphene oxide touches blood: In vivo interactions of bio-coronated 2D materials. Nanoscale Horiz 2019,4(2),273-290 [DOI: 10.1039/C8NH00318A]
Ren H.; Wang C.; Zhang J.; Zhou X.; Xu D.; Zheng J.; Guo S.; Zhang J.; DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 2010,4(12),7169-7174 [DOI: 10.1021/nn101696r]
Lu C.J.; Jiang X.F.; Junaid M.; Ma Y.B.; Jia P.P.; Wang H.B.; Pei D.S.; Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. Chemosphere 2017,184,795-805 [DOI: 10.1016/j.chemosphere.2017.06.049]
Ali-boucetta H.; Bitounis D.; Raveendran-Nair R.; Servant A.; Van den Bossche J.; Kostarelos K.; Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv Healthc Mater 2013,2(3),433-441 [DOI: 10.1002/adhm.201200248]
Singh S.K.; Singh M.K.; Kulkarni P.P.; Sonkar V.K.; Grácio J.J.A.; Dash D.; Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 2012,6(3),2731-2740 [DOI: 10.1021/nn300172t]
Liu Y.; Luo Y.; Wu J.; Wang Y.; Yang X.; Yang R.; Wang B.; Yang J.; Zhang N.; Graphene oxide can induce in vitro and in vivo mutagenesis. Sci Rep 2013,3(1),3469 [DOI: 10.1038/srep03469]
Ma J.; Liu R.; Wang X.; Liu Q.; Chen Y.; Valle R.P.; Zuo Y.Y.; Xia T.; Liu S.; Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano 2015,9(10),10498-10515 [DOI: 10.1021/acsnano.5b04751]
Mendonça M.C.P.; Soares E.S.; de Jesus M.B.; Ceragioli H.J.; Batista Â.G.; Nyúl-Tóth Á.; Molnár J.; Wilhelm I.; Maróstica M.R.; Krizbai I.; da Cruz-Höfling M.A.; PEGylation of reduced graphene oxide induces toxicity in cells of the blood–brain barrier: An in vitro and in vivo Study. Mol Pharm 2016,13(11),3913-3924 [DOI: 10.1021/acs.molpharmaceut.6b00696]
Amrollahi-Sharifabadi M.; Koohi M.K.; Zayerzadeh E.; Hablolvarid M.H.; Hassan J.; Seifalian A.M.; in vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int J Nanomedicine 2018,13,4757-4769 [DOI: 10.2147/IJN.S168731]
Wang K.; Ruan J.; Song H.; Zhang J.; Wo Y.; Guo S.; Cui D.; Biocompatibility of graphene oxide. Nanoscale Res Lett 2010,6(1),8 [DOI: 10.1007/s11671-010-9751-6]
Jiang Li.; Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. Nano Taday 2020,35(12),100922
Rhazouani A.; Gamrani H.; El Achaby M.; Aziz K.; Gebrati L.; Uddin M.S.; Aziz F.; Synthesis and toxicity of graphene oxide nanoparticles: A literature review of in vitro and in vivo studies. BioMed Res Int 2021,2021,1-19 [DOI: 10.1155/2021/5518999]
Shahriari S.; Sastry M.; Panjikar S.; Singh Raman R.K.; Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnol Sci Appl 2021,14,197-220 [DOI: 10.2147/NSA.S334487]
Fontana C.R.; Lerman M.A.; Patel N.; Grecco C.; de Souza Costa C.A.; Amiji M.M.; Bagnato V.S.; Soukos N.S.; Safety assessment of oral photodynamic therapy in rats. Lasers Med Sci 2013,28(2),479-486 [DOI: 10.1007/s10103-012-1091-6]
Lucky S.S.; Muhammad Idris N.; Li Z.; Huang K.; Soo K.C.; Zhang Y.; Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano 2015,9(1),191-205 [DOI: 10.1021/nn503450t]
Younis M.R.; Wang C.; An R.; Wang S.; Younis M.A.; Li Z.Q.; Wang Y.; Ihsan A.; Ye D.; Xia X.H.; Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 2019,13(2),8b09552 [DOI: 10.1021/acsnano.8b09552]
Beltrán Hernández I.; Yu Y.; Ossendorp F.; Korbelik M.; Oliveira S.; Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: Clinical recommendations. J Clin Med 2020,9(2),333 [DOI: 10.3390/jcm9020333]
Choi V.; Rajora M.A.; Zheng G.; Activating drugs with sound: Mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjug Chem 2020,31(4),967-989 [DOI: 10.1021/acs.bioconjchem.0c00029]
Sviridov A.P.; Osminkina L.A.; Kharin A.Y.; Gongalsky M.B.; Kargina J.V.; Kudryavtsev A.A.; Bezsudnova Y.I.; Perova T.S.; Geloen A.; Lysenko V.; Timoshenko V.Y.; Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology 2017,28(10),105102 [DOI: 10.1088/1361-6528/aa5b7c]
Yumita N.; Umemura S.; Sonodynamic antitumour effect of chloroaluminum phthalocyanine tetrasulfonate on murine solid tumour. J Pharm Pharmacol 2010,56(1),85-90 [DOI: 10.1211/0022357022412]
Canavese G.; Ancona A.; Racca L.; Canta M.; Dumontel B.; Barbaresco F.; Limongi T.; Cauda V.; Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem Eng J 2018,340,155-172 [DOI: 10.1016/j.cej.2018.01.060]

MeSH Term

Graphite
Humans
Neoplasms
Nanostructures
Antineoplastic Agents
Animals
Contrast Media
Quantum Dots
Magnetic Resonance Imaging

Chemicals

Graphite
Antineoplastic Agents
Contrast Media

Word Cloud

Similar Articles

Cited By