An ASER AI/ML expert panel formative user research study for an interpretable interactive splenic AAST grading graphical user interface prototype.

Nathan Sarkar, Mitsuo Kumagai, Samantha Meyr, Sriya Pothapragada, Mathias Unberath, Guang Li, Sagheer Rauf Ahmed, Elana Beth Smith, Melissa Ann Davis, Garvit Devmohan Khatri, Anjali Agrawal, Zachary Scott Delproposto, Haomin Chen, Catalina G��mez Caballero, David Dreizin
Author Information
  1. Nathan Sarkar: University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
  2. Mitsuo Kumagai: University of Maryland College Park, 4603 Calvert Rd, College Park, MD, 20740, USA.
  3. Samantha Meyr: University of Maryland College Park, 4603 Calvert Rd, College Park, MD, 20740, USA.
  4. Sriya Pothapragada: University of Maryland College Park, 4603 Calvert Rd, College Park, MD, 20740, USA.
  5. Mathias Unberath: Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
  6. Guang Li: University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
  7. Sagheer Rauf Ahmed: University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
  8. Elana Beth Smith: University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
  9. Melissa Ann Davis: Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
  10. Garvit Devmohan Khatri: University of Colorado, 13001 E 17Th Pl, Aurora, CO, 80045, USA.
  11. Anjali Agrawal: Teleradiology Solutions, 22 Lianfair Road Unit 6, Ardmore, PA, 19003, USA.
  12. Zachary Scott Delproposto: University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA.
  13. Haomin Chen: Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
  14. Catalina G��mez Caballero: Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
  15. David Dreizin: University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA. daviddreizin@gmail.com. ORCID

Abstract

PURPOSE: The AAST Organ Injury Scale is widely adopted for splenic injury severity but suffers from only moderate inter-rater agreement. This work assesses SpleenPro, a prototype interactive explainable artificial intelligence/machine learning (AI/ML) diagnostic aid to support AAST grading, for effects on radiologist dwell time, agreement, clinical utility, and user acceptance.
METHODS: Two trauma radiology ad hoc expert panelists independently performed timed AAST grading on 76 admission CT studies with blunt splenic injury, first without AI/ML assistance, and after a 2-month washout period and randomization, with AI/ML assistance. To evaluate user acceptance, three versions of the SpleenPro user interface with increasing explainability were presented to four independent expert panelists with four example cases each. A structured interview consisting of Likert scales and free responses was conducted, with specific questions regarding dimensions of diagnostic utility (DU); mental support (MS); effort, workload, and frustration (EWF); trust and reliability (TR); and likelihood of future use (LFU).
RESULTS: SpleenPro significantly decreased interpretation times for both raters. Weighted Cohen's kappa increased from 0.53 to 0.70 with AI/ML assistance. During user acceptance interviews, increasing explainability was associated with improvement in Likert scores for MS, EWF, TR, and LFU. Expert panelists indicated the need for a combined early notification and grading functionality, PACS integration, and report autopopulation to improve DU.
CONCLUSIONS: SpleenPro was useful for improving objectivity of AAST grading and increasing mental support. Formative user research identified generalizable concepts including the need for a combined detection and grading pipeline and integration with the clinical workflow.

Keywords

References

  1. Radiol Artif Intell. 2020 Nov 11;2(6):e190220 [PMID: 33330848]
  2. Front Radiol. 2023;3: [PMID: 37485306]
  3. J Trauma. 2004 Mar;56(3):542-7 [PMID: 15128125]
  4. Front Med (Lausanne). 2023 Oct 26;10:1241570 [PMID: 37954555]
  5. Emerg Radiol. 2023 Jun;30(3):251-265 [PMID: 36917287]
  6. Emerg Radiol. 2023 Jun;30(3):267-277 [PMID: 36913061]
  7. Radiographics. 2012 May-Jun;32(3):609-31 [PMID: 22582350]
  8. J Trauma. 2003 Jul;55(1):62-8 [PMID: 12855882]
  9. Acad Radiol. 2021 Nov;28 Suppl 1:S138-S147 [PMID: 33288400]
  10. Emerg Radiol. 2016 Feb;23(1):41-47 [PMID: 26475281]
  11. Mach Learn Med Imaging. 2019 Oct;11861:461-469 [PMID: 37396112]
  12. World J Emerg Surg. 2017 Aug 18;12:40 [PMID: 28828034]
  13. J Trauma. 2004 Feb;56(2):334-8 [PMID: 14960976]
  14. Biochem Med (Zagreb). 2012;22(3):276-82 [PMID: 23092060]
  15. Radiology. 2022 Aug;304(2):274-282 [PMID: 35699581]
  16. Can Assoc Radiol J. 2024 Jan 8;:8465371231221052 [PMID: 38189316]
  17. Radiology. 2018 Nov;289(2):374-383 [PMID: 30084754]
  18. Acad Radiol. 2011 Feb;18(2):129-42 [PMID: 21232681]
  19. NPJ Digit Med. 2022 Oct 19;5(1):156 [PMID: 36261476]
  20. J Digit Imaging. 2021 Feb;34(1):53-65 [PMID: 33479859]
  21. J Orthop Trauma. 2005 Jul;19(6):401-6 [PMID: 16003200]
  22. J Am Coll Radiol. 2017 Nov;14(11):1498-1503 [PMID: 28916177]
  23. J Trauma Acute Care Surg. 2020 Mar;88(3):425-433 [PMID: 32107356]
  24. J Med Imaging Radiat Oncol. 2011 Apr;55(2):163-9 [PMID: 21501405]
  25. Abdom Radiol (NY). 2021 Jun;46(6):2556-2566 [PMID: 33469691]
  26. Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12903:424-433 [PMID: 37483538]
  27. IEEE Trans Med Imaging. 2022 Jun;41(6):1346-1357 [PMID: 34968179]
  28. Nat Commun. 2020 Jul 22;11(1):3673 [PMID: 32699250]
  29. Radiol Phys Technol. 2020 Mar;13(1):6-19 [PMID: 31898014]
  30. AJR Am J Roentgenol. 2019 Dec;213(6):1204-1206 [PMID: 31414886]
  31. Front Radiol. 2022 Jul;2: [PMID: 36120383]
  32. Injury. 2012 Sep;43(9):1337-46 [PMID: 21999935]
  33. J Trauma. 2011 Oct;71(4):898-903; discussion 903 [PMID: 21986737]
  34. J Trauma Acute Care Surg. 2015 Sep;79(3):335-42 [PMID: 26307863]
  35. Can Assoc Radiol J. 2024 Feb;75(1):171-177 [PMID: 37405424]
  36. J Trauma Acute Care Surg. 2018 Dec;85(6):1119-1122 [PMID: 30462622]
  37. Emerg Radiol. 2023 Aug;30(4):435-441 [PMID: 37318609]
  38. Emerg Radiol. 2022 Dec;29(6):995-1002 [PMID: 35971025]
  39. Emerg Radiol. 2023 Feb;30(1):41-50 [PMID: 36371579]
  40. J Trauma Acute Care Surg. 2023 Jan 1;94(1):125-132 [PMID: 35546417]

Grants

  1. K08 EB027141/NIBIB NIH HHS
  2. R01 GM148987/NIGMS NIH HHS
  3. NIH-K08-EB027141-01A1/Foundation for the National Institutes of Health
  4. NIH-R01-GM148987-01/Foundation for the National Institutes of Health

MeSH Term

Humans
Tomography, X-Ray Computed
Artificial Intelligence
Reproducibility of Results
Wounds, Nonpenetrating
Machine Learning

Word Cloud

Similar Articles

Cited By